
Pascal 4.0 User’s Guide

Part No.: 802-2943-10
Revision A, November 1995

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system and from the Berkeley 4.3 BSD system, licensed from the
University of California. Third-party software, including font technology in this product, is protected by copyright and licensed
from Sun’s Suppliers.
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, Solaris, the Sun Microsystems Computer
Corporation logo, SunSoft, the SunSoft logo, ProWorks, ProWorks/TeamWare, ProCompiler, Sun-4, SunOS, ONC, ONC+, NFS,
OpenWindows, DeskSet, ToolTalk, SunView, XView, X11/NeWS, AnswerBook, and Magnify Help are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and may be protected as trademarks in other countries. UNIX is a
registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN
LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc.
PowerPC™ is a trademark of International Business Machines Corporation. HP ® and HP-UX ® are registered trademarks of
Hewlett-Packard Company. All other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. in the United States and may be protected as trademarks in other countries. SPARCcenter, SPARCcluster, SPARCompiler,
SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver, SPARCstation, SPARCstorage, SPARCworks,
microSPARC, microSPARC-II, SPARCware, and UltraSPARC are licensed exclusively to Sun Microsystems, Inc. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK™ and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUI’s and otherwise comply with Sun’s written license
agreements.

X Window System is a product of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xix

1. Introduction . 1

Standards . 1

Pascal Compiler . 2

Features . 2

Compatibility . 2

Text Editors . 3

Debuggers . 3

XView Toolkit . 3

Native Language Support. 3

Internationalization . 4

Locale . 5

Licensing . 5

2. Pascal Programs. 7

A Simple Pascal Program . 7

iv Pascal 4.0 User’s Guide

Compiling the Program . 8

Running the Program . 9

Renaming the Executable File . 9

An Interactive Pascal Program . 10

Compiling the Program . 11

Running the Program . 11

Redirecting I/O . 11

Using a File Name as a File Variable 12

Where Did My Program Fail?. 13

Using Pascal Traceback . 13

Using a Sample Program with Segmentation Violation . . . 14

3. The Pascal Compiler. 17

pc Version Number . 17

Compile and Link Sequence . 18

Language Preprocessor . 19

File Name Extensions Accepted By pc . 20

Option-Passing on the Command-Line. 21

Option-Passing in the Program Text . 21

Options . 23

–a . 24

–Bbinding. 24

–b . 24

-bsdmalloc . 25

–C. 25

Contents v

–c . 26

-calign . 26

–cg89 . 26

–cg92 . 26

-cond . 26

–config . 27

–Dname[= def] . 27

–dalign . 28

-dn . 28

-dryrun . 28

-dy . 28

–fast . 28

-fnonstd . 29

–fns . 29

–fround= r . 29

–ftrap= t . 30

-G . 30

–g . 31

–H. 31

-h name . 31

–help or -flags . 32

–I pathname . 32

–i name . 32

-keeptmp . 32

vi Pascal 4.0 User’s Guide

–L . 33

–l . 33

-L directory . 33

-libmieee . 34

–libmil . 34

–l lib . 34

–misalign . 34

-mt . 34

–native . 35

-nocx . 35

-nolib . 35

–nolibmil . 35

-noqueue . 35

-notrace . 36

–O[level] . 36

–o filename . 38

–P . 38

–p and –pg . 39

–pic , -Kpic and –PIC , -KPIC . 39

–Qoption . 40

–Qpath pathname . 40

–Qproduce . 40

-qp . 40

-R . 41

Contents vii

-R path[: dir] . 41

-Rw. 41

–S . 46

–s[level] . 46

–sb . 46

–sbfast . 46

-tc . 47

–temp= dir . 47

–tim e . 48

–U name . 49

–V . 49

–V0 and –V1 . 49

–v . 49

–w. 49

-xa . 49

-xarch= a . 49

-xcache= c . 53

-xchip= c . 54

-xcg89 . 55

-xcg92 . 55

–xF . 55

-xildoff . 56

-xildon . 56

–xl . 56

viii Pascal 4.0 User’s Guide

-xlibmieee . 56

-xlibmil . 56

-xlibmopt . 57

–xlicinfo . 57

–xMerge . 57

-xnolib . 57

-xnolibmopt . 57

-x05 . 57

-xpg . 58

-xprofile= p . 58

-xregs= r . 60

–xs . 61

-xsafe=mem . 61

-xsb . 61

-xsbfast . 61

-xspace . 62

-xtarget= t . 62

–Z . 66

-ztext . 66

4. Program Construction and Management 67

Units . 67

Using Program Units and Module Units 68

Compiling with Units . 69

Using Units and Header Files . 70

Contents ix

Sharing Variables Between Units . 71

Libraries . 74

5. Separate Compilation. 75

Working with Units . 75

Using Program Units. 76

Using Module Units . 76

Sharing Variables and Routines Across Multiple Units 76

Compiling without the -xl Option. 77

Using the -xl Option . 80

Sharing Declarations in Multiple Units. 87

6. The C–Pascal Interface . 89

Compilation of Mixed-Language Programs 89

Compatibility of Types for C and Pascal. 90

Precautions with Compatible Types 91

Incompatibilities . 92

General Parameter Passing in C and Pascal 93

Procedure Calls: C–Pascal. 93

Variable Parameters. 94

Value Parameters . 112

Function Return Values. 115

Input and Output. 116

Procedure Calls: Pascal–C. 117

Variable Parameters. 117

Value Parameters . 129

x Pascal 4.0 User’s Guide

Function Return Values. 130

Parameters That Are Pointers to Procedures 131

Procedures and Functions as Parameters 132

Global Variables in C and Pascal . 133

File-Passing Between Pascal and C . 134

7. The C++–Pascal Interface . 137

Sample Interface. 137

Compatibility of Types for C++ and Pascal 138

C++ Name Encoding . 138

Procedure Calls: C++–Pascal . 138

Arguments Passed by Reference . 139

Arguments Passed by Value . 150

Function Return Values. 152

Procedure Calls: Pascal–C++ . 155

Arguments Passed by Reference . 155

Arguments Passed by Value . 157

Function Return Values. 159

Global Variables in C++ and Pascal . 161

Pascal File Pointers to C++ . 162

8. The FORTRAN–Pascal Interface . 163

Compiler Mixed-Language Programs . 163

Compatibility of Types for FORTRAN and Pascal. 164

Precautions with Compatible Types 165

Incompatibilities . 166

Contents xi

General Parameter-Passing in FORTRAN and Pascal 167

Procedure Calls: FORTRAN-Pascal . 168

Variable Parameters. 168

Value Parameters . 180

Pointers . 183

Function Return Values. 184

Procedure Calls: Pascal-FORTRAN . 185

Variable Parameters. 186

Value Parameters . 197

Pointers . 200

Function Return Values. 201

Routines as Parameters . 202

9. Error Diagnostics. 205

Compiler Syntax Errors. 205

Illegal Characters . 205

String Errors . 206

Digits in Real Numbers. 206

Replacements, Insertions, and Deletions 207

Undefined or Improper Identifiers . 208

Expected Symbols and Malformed Constructs 208

Expected and Unexpected End-of-file. 209

Compiler Semantic Errors. 210

Format of the Error Diagnostics. 210

Incompatible Types . 210

xii Pascal 4.0 User’s Guide

The scalar Class . 211

Procedure and Function Type Errors. 211

Scalar Error Messages . 212

Expression Diagnostics . 212

Type Equivalence . 214

Unreachable Statements . 215

The goto Statement . 216

Uninitialized Variables . 216

Unused Variables, Constants, Types, Labels, and Routines 216

Compiler Panics, I/O Errors. 217

Runtime Errors . 217

10. The XView Toolkit . 221

Overview. 221

Tools. 222

Objects . 222

Object-Oriented Programming. 222

Pascal Interface. 223

Compiling with Libraries . 224

Header Files . 224

Attribute Lists . 225

Handles . 226

Data Types . 226

Coding Fragment . 227

Conversion of C to Pascal . 227

Contents xiii

An Example . 227

Sample Translation of an XView Function to Pascal 229

Sample Program. 230

Menu Demo Program . 231

11. Math Libraries . 233

Contents of the Math Libraries. 234

libm Functions. 235

IEEE Support Functions . 236

ieee_functions() . 237

ieee_values() . 237

ieee_retrospective() . 238

SPARC Libraries . 238

Arithmetic Exceptions . 239

Math Library Exception-Handling Function: matherr() 240

libsunmath Support for IEEE Modes and Exceptions 242

xiv Pascal 4.0 User’s Guide

xv

Figures

Figure 3-1 Organization of Pascal Compilation. 19

Figure 3-2 Options in Program Text . 23

Figure 10-1 A Sample Class Hierarchy . 223

xvi Pascal 4.0 User’s Guide

xvii

Tables

Table 3-1 File Name Suffixes Recognized by Pascal 20

Table 3-2 Options That Can Be Passed in Program Text 21

Table 3-3 The -xarch Values . 51

Table 3-4 The -xcache Values. 53

Table 3-5 The -xchip Values . 54

Table 3-6 The -xprofile Values . 59

Table 3-7 The -xregs Values . 60

Table 3-8 The -xtarget Values . 62

Table 3-9 -xtarget Expansions . 63

Table 6-1 C and Pascal Size and Alignment of Compatible Types 90

Table 6-2 C and Pascal Size and Alignment of Compatible Types with –xl
91

Table 6-3 Set Implementation . 110

Table 8-1 Default Sizes and Alignments of Compatible Types (Pascal and
FORTRAN) . 165

–xl
with –xl . 165

xviii Pascal 4.0 User’s Guide

Table 10-1 C Declarations to Pascal Declarations . 228

Table 11-1 Contents of Math Libraries. 234

xix

Preface

This manual describes the Pascal 4.0 compiler from SunSoft™. The purpose of
this manual is to help you begin writing and compiling Pascal programs on a
SPARCstation™.

In a previous major release, this Pascal compiler also ran on Solaris 1.x. Some
features remain in the documentation as being for Solaris 1.x only.

The README file that accompanies the product contains other release-specific
information,

Note – All references to Pascal in this manual refer to the Pascal 4.0 compiler
unless otherwise indicated.

Operating Environment
For information on the operating environment, see the README file.

Installation
For instructions on how to install Pascal, refer to the Installing SunSoft
Developer Products (SPARC/Solaris) manual.

xx Pascal 4.0 User’s Guide

Audience
This guide was prepared for software engineers who write Pascal programs on
a SPARCstation. It assumes you are familiar with ISO standard Pascal and the
Solaris™ operating system.

Organization
This guide contains the following chapters:

• Chapter 1, “Introduction,” gives basic information about the Pascal
compiler and related program development tools.

• Chapter 2, “Pascal Programs,” describes how to write, compile, and run a
Pascal program.

• Chapter 3, “The Pascal Compiler,” describes the pc command and its
options.

• Chapter 4, “Program Construction and Management,” is an introduction to
how complex programs are built in Pascal.

• Chapter 5, “Separate Compilation,” describes how programs can be
divided into several units, and how they are compiled and linked.

• Chapter 6, “The C–Pascal Interface,” describes how to write programs that
are partly in C and partly in Pascal.

• Chapter 7, “The C++–Pascal Interface,” describes how to write programs
that are partly in C++ and partly in Pascal.

• Chapter 8, “The FORTRAN–Pascal Interface,” describes how to write
programs that are partly in FORTRAN and partly in Pascal.

• Chapter 9, “Error Diagnostics,” describes the errors you may encounter
while writing programs with Pascal.

• Chapter 10, “The XView Toolkit,” describes how to use the XView toolkit
with Pascal.

• Chapter 11, “Math Libraries,” describes how to use the libm and
libsunmath functions in Pascal programs.

• Appendix A, “Pascal Preprocessor,” describes the Pascal preprocessors,
with emphasis on the nonstandard preprocessor, cppas .

Preface xxi

• Appendix B, “Error Messages,” lists all the error messages the compiler
produces.

This guide concludes with an index.

Conventions Used in This Guide
This guide contains syntax diagrams of the Pascal language in extended
Backus-Naur Formalism (BNF) notation. Here are the meta symbols:

The following table describes the type styles and symbols used in this guide:

Table P-1 BNF Meta Symbols

Meta Symbol Description

::= Defined as

| Can be used as an alternative

 (a | b) Either a or b

 [a] Zero or one instance of a

{ a } Zero or more instances of a

'abc ' The characters abc

Table P-2 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.
Use ls -a to list all files.
hostname% You have mail.

AaBbCc123 What you type, contrasted with on-
screen computer output

hostname% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms, or
words to be emphasized

Read the User’s Guide.
These are called class options.
You must be root to do this.

xxii Pascal 4.0 User’s Guide

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Related Documentation
This manual is designed to accompany the following documents:

• The Pascal 4.0 Reference Manual, which describes extensions to standard
Pascal

• The Pascal 4.0 Quick Reference, which summarizes the compiler options

Both this manual and the Pascal 4.0 Reference Manual are available in the
AnswerBook® system, an on-line documentation viewing tool that takes
advantage of dynamically linked headings and cross-references. The Installing
SunSoft Developer Products (SPARC/Solaris) manual shows you how to install
AnswerBook.

Manual Page

Pascal 4.0 provides an on-line manual page (also known as man page), on
pc (1), that describes the Pascal compiler. This document is included in the
Pascal package and must be installed with the rest of the software

Once you install the documentation, you can read about pc by entering the
man command followed by the command name, as in:

hostname% man pc

Table P-3 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface xxiii

README Files

The README default directory is: /opt/SUNWspro/READMEs .

This directory contains the following files:

• A Pascal 4.0 README, called pascal , that describes the new features,
software incompatibilities, and software bugs

• A floating-point white paper, “What Every Scientist Should Know About
Floating-Point Arithmetic,” by David Goldberg, in PostScript™ format. The
file is called floating-point.ps , and can be printed on any PostScript-
compatible printer that has Palatino font. It can be viewed on-line by using
the imagetool command:

hostname% imagetool floating-point.ps

This paper is also available in the AnswerBook system.

Other Related Documentation

Other reference material includes:

Profiling Tools
Numerical Computation Guide

Documents in Hard Copy and in AnswerBook

The following table shows what documents are on-line, in hard copy, or both:

Table P-4 Documents in Hard Copy and in AnswerBook

Title Hard Copy On-Line

Pascal 4.0 User’s Guide X X (AnswerBook)

Pascal 4.0 Reference Manual X X (AnswerBook)

Pascal 4.0 Quick Reference X

Installing SunSoft Developer Products (SPARC/Solaris) X X (AnswerBook)

Profiling Tools X (AnswerBook)

xxiv Pascal 4.0 User’s Guide

Numerical Computation Guide X (AnswerBook)

README X (CD-ROM)

What Every Scientist Should Know About Floating-Point Arithmetic X (AnswerBook and CD-ROM)

Table P-4 Documents in Hard Copy and in AnswerBook (Continued)

Title Hard Copy On-Line

1

Introduction 1

This chapter gives an overview of the features of Pascal, including
compatibility, internationalization, and licensing. It contains the following
sections:

Standards
Pascal is a derivative of the Berkeley Pascal system distributed with UNIX® 4.2
BSD. It complies with FIPS PUB 109 ANSI/IEEE 770 X3.97-1983 and
BS6192/ISO7185 at both level 0 and level 1.

Standards page 1

Pascal Compiler page 2

Features page 2

Compatibility page 2

Text Editors page 3

Debuggers page 3

XView Toolkit page 3

Native Language Support page 3

Licensing page 5

2 Pascal 4.0 User’s Guide

1

Pascal Compiler
The name of the Pascal compiler is pc . If given an argument file name ending
with .p or .pas , pc compiles the file and leaves the result in an executable
file, called a.out by default.

Features
Pascal includes many extensions to the standard, including the following:

• Separate compilation of programs and modules
• dbx (symbolic debugger) support
• Optimizer support
• Multiple label , const , type , and var declarations
• Variable-length character strings
• Compile-time initializations
• static and extern declarations
• Different sizes of integer and real data types
• Integer constants in any base, from 2 to 16
• Extended input/output facilities
• Extended library of built-in functions and procedures
• Universal and function and procedure pointer types
• Direction of parameter passing: into a routine, out of a routine, or both
• Functions that return structured-type results

Note – For other release-specific information, please refer to the README file
that accompanies the product release.

Compatibility
In general, Pascal 4.0 runs in the Solaris 2.x or above operating environment.
This product is not compatible with /usr/ucblib/libucb.a on the Solaris
2.x environment.

Introduction 3

1

Text Editors
The operating system provides two main editors:

• Text Editor—A window-based text editor that runs in the OpenWindows
environment. Start this tool by typing textedit at the system prompt.

• vi—The standard visual display editor that offers the capabilities of both a
line and a screen editor. It also provides several commands for editing
programs. For example:

• The autoindent option provides white space at the beginning of a line.
• The showmatch option shows matching parentheses.

Debuggers
SunSoft offers a variety of programming tools that run in the Solaris operating
environment. For debugging, the following tools are available:

• dbx —A symbolic debugger
• debugger —A window- and mouse-based version of the symbolic debugger

You can use Pascal with fix-and-continue, a debugger functionality. See the
debugger documentation for details of this feature.

XView Toolkit
The XView application programmer’s interface (API) is an object-oriented and
server-based user-interface toolkit for the X Window System Version 11 (X11).
It is designed for manipulating XView windows and other XView objects.
Chapter 10, “The XView Toolkit,” describes how to use XView with Pascal.

Native Language Support
Sun supports the development of applications in languages other than English.
These languages include most European languages and Japanese. As a result,
you can easily switch your application from one native language to another.
This feature is known as internationalization.

4 Pascal 4.0 User’s Guide

1

Internationalization

A product can support up to four levels of internationalization:

• Level 1—Allows native-language characters (such as the a-umlaut). This is
referred to as the 8-bit clean model because the eighth bit in each byte is
used to represent native-language characters.

• Level 2—Recognizes and displays international date and time formats, such
as 26.07.90 in Italian; international decimal units, such as 1.234.567,89 in
French; and international monetary units, such as 1.234,56 Pts in Spanish.

• Level 3—Contains support for localized messages and text presentation.

• Level 4—Contains Asian language support.

Pascal supports all four levels. See the Pascal 4.0 Reference Manual for a
description of the date and time functions in internationalized formats.

Pascal does not allow input and output in the various international formats. If
it does, it does not comply with the Pascal language standard, ANSI/IEEE
770 X3.97-1983.

For example, the standard specifies a period (.) as the decimal unit in the
floating-point representation. Consider the following program, which prints a
floating-point value:

When you compile and run the program on the internationalized Pascal
compiler, the output is:

program sample(output);

var r : real := 1.2;

begin
writeln(r);

end.

1.20000000000000e+00

Introduction 5

1

If you reset your system locale to, for example, France, and rerun the program,
the output is the same. Pascal does not replace the period with a comma, the
French decimal unit.

Locale

You can change your application from one native language to another by
setting the locale. For information on this and other native language support
features, see the Solaris documentation on internationalization.

Licensing
This compiler uses network licensing, as described in the manual, Installing
SunSoft Developer Products (SPARC/Solaris).

When you invoke the compiler, if a license is available, the compiler starts. If
no license is available, your request for a license is put on a queue, and your
compile job continues when a license becomes available. A single license can
be used for any number of simultaneous compiles by a single user on a single
machine. There are two licensing-related options:

• -noqueue —Does not queue request if no license is available.
• -xlicinfo —Returns information on the status of licensing.

The -xlicinfo option does not check out a license.

For details on how to obtain a license—where to call, what information to have
ready—refer to the manual, Installing SunSoft Developer Products
(SPARC/Solaris).

6 Pascal 4.0 User’s Guide

1

7

Pascal Programs 2

This chapter cites two examples that illustrate how to compile and execute a
program. It also explains how to use the traceback facility to find out why a
program fails. The sections are:

Building a program with SPARCompiler Pascal requires three steps:

1. Writing a program in Pascal using an editor and saving it in a file with a
.p or .pas suffix

2. Compiling the .p or .pas file using the pc command

3. Executing the program by typing the name of the executable file at the
system prompt

A Simple Pascal Program
The following is a simple Pascal program that converts temperatures from
Fahrenheit to Celsius. Use an editor to type the code on your system and save
it in a file called temp.p .

A Simple Pascal Program page 7

An Interactive Pascal Program page 10

Where Did My Program Fail? page 13

8 Pascal 4.0 User’s Guide

2

Compiling the Program

Now compile the program with pc , the Pascal compiler, by typing at the
system prompt:

hostname% pc temp.p

Pascal names the compiled version of the program a.out by default.

program temperature(output) ;

{ Program to convert temperatures from
 Fahrenheit to Celsius. }

const
MIN = 32 ;
MAX = 50 ;
CONVERT = 5 / 9 ;

var
fahren: integer ;
celsius: real ;

begin
writeln('Fahrenheit Celsius') ;
writeln('---------- -------') ;
for fahren := MIN to MAX do begin

celsius := CONVERT * (fahren - 32) ;
writeln(fahren: 5, celsius: 18: 2) ;

 end ;
end.

Pascal Programs 9

2

Running the Program

To run the program, enter a.out at the prompt. The output of temp.p is then
displayed:

Renaming the Executable File

It is inconvenient to have the result of every compilation in a file called a.out .
If such a file already exists, it is overwritten. You can avoid this in either of the
two following ways:

• Change the name of a.out after each compilation with the mv command:

hostname% mv a.out temp

• Use the compiler –o option to name the output executable file. This
example places the executable code in the file temp :

hostname% pc –o temp temp.p

hostname% a.out
 Fahrenheit Celsius
 ---------- -------

32 0.00
33 0.56
34 1.11
35 1.67
36 2.22
37 2.78
38 3.33
39 3.89
40 4.44
41 5.00
42 5.56
43 6.11
44 6.67
45 7.22
46 7.78
47 8.33
48 8.89
49 9.44
50 10.00

10 Pascal 4.0 User’s Guide

2

Now run the program by typing the name of the executable file. The output
follows:

An Interactive Pascal Program
In Pascal, the predefined file variable, input , is equivalent to the operating
system standard input file, stdin . Similarly, the file variable, output , is
equivalent to the standard output file, stdout .

Following is a Pascal program that copies input to output . Use an editor to
type the code on your system and store it in a file called copy.p :

hostname% temp
Fahrenheit Celsius
---------- -------

32 0.00
33 0.56
34 1.11
. .
. .
. .

program copy(input, output);

{ This program copies input to output. }

var
 c: char;

begin
 while not eof do begin
 while not eoln do begin
 read(c);
 write(c)
 end;
 readln;
 writeln
 end
end. { copy }

Pascal Programs 11

2

Compiling the Program

Use the pc command to compile the program and store it in the executable file
copy . Here is the command format:

hostname% pc -o copy copy.p

Running the Program

Because the standard files input and output default to the terminal, the
program simply echoes each line you type. The program terminates when you
type the end-of-file (Control-d) character at the beginning of a line. Try it:

Redirecting I/O

To write the output to a file instead of to the terminal, use the redirection
operator, >, followed by a file name. For instance, to write to a file called
data , enter the following:

hostname% copy
hello, are you listening?
hello, are you listening?
goodbye, I must go now .
goodbye, I must go now.
(Control-d)

hostname% copy > data
hello, are you listening?
goodbye, I must go now.
(Control-d)

12 Pascal 4.0 User’s Guide

2

Using the same program, but with the < operator to redirect input, you can
print the file on the terminal:

Using a File Name as a File Variable

You can also redirect the output by listing the file as a file variable in the
program statement. The Pascal library associates the file variable with a file of
the same name. For example, copy2.p lists data as the input file variable:

hostname% copy < data
hello, are you listening?
goodbye, I must go now.

program copy2(data, output);

{ This program redirects input. }

var
 c: char;
 data: text;

begin
 reset(data);
 while not eof(data) do begin
 while not eoln(data) do begin
 read(data, c);
 write(c)
 end;
 readln(data);
 writeln
 end
end. { copy2 }

Pascal Programs 13

2

Assuming that the file data is still in the current directory, you can compile
and run the program as follows:

Where Did My Program Fail?
SPARCompiler Pascal can trace why a program failed; its traceback utility
finds the routine that triggers the error.

Using Pascal Traceback

Pascal traceback installs signal handlers on selected signals and dumps a
backtrace when those signals are caught. The backtrace shows the chain of
calls leading from the routine in which the error occurred, all the way back to
the main program.

Pascal catches the following set of signals:

See the signal (3) man page for further information on these signals.

After the system produces the traceback, it continues with whatever action it
would have taken if the interposer had not been in place, including calling a
user signal handler that was previously set.

The traceback facility uses the debugger dbx . To obtain a traceback,
SPARCworks must be installed on your system, and the directory containing
dbx must be in your PATH environment variable. If the traceback routine
cannot find dbx , it does not produce the traceback.

Use the -notrace command-line option to disable traceback.

hostname% pc -o copy2 copy2.p
hostname% copy2
hello, are you listening?
goodbye, I must go now.

SIGQUIT SIGIOT SIGFPE SIGSYS SIGTERM

SIGILL SIGABRT SIGBUS SIGPIPE SIGLOST

SIGTRAP SIGEMT SIGSEGV

14 Pascal 4.0 User’s Guide

2

Using a Sample Program with Segmentation Violation

A segmentation violation occurs when your program tries to reference memory
outside your address space. The operating system detects this action and
generates an error message. Following is an example program, SegViol.p ,
which contains a segmentation violation:

Compiling and Running the Program

When you compile and run the program, you receive output similar to the
following. The first line indicates the name of the offending signal—in this
case, a segmentation violation.

program SegmentationViolation;
type
 Pinteger = ^integer;

procedure ErrorInHere;
var
 IntVar: integer;
 NullPtr: Pinteger;
begin
 NullPtr := nil;
 { Next statement causes a SEGV }
 IntVar := NullPtr^;
end;

procedure Call1;
 procedure Call2;
 begin
 ErrorInHere;
 end;
begin
 Call2;
end;

begin
 Call1;
end.

Pascal Programs 15

2

In this example, ErrorInHere reported the error. The ErrorInHere
procedure was called by Call1.Call2 , which was in turn called by the main
program. Routine names, such as Call1.Call2 , indicate a nested routine. If
Pascal cannot find the name of a routine, for example, because the executable
file has been stripped, it prints the hex address.

Using the -g Option

If you compile the program with the –g option, the traceback also reports the
arguments, the line number, and the file name of each routine.

hostname% pc SegViol.p
hostname% a.out

*** a.out terminated by signal 11: segmentation violation
*** Traceback being written to a.out.trace
Abort (core dumped)

hostname% more a.out.trace

*** Stacktrace of a.out
*** Program terminated due to segmentation violation
 [3] __PC0__sigdie(0xb, 0xefffedf0, 0xefffec30, 0x0, 0x1, 0x0), at 0x12128
 ---- called from signal handler with signal 11 (SIGSEGV) ------
 [4] ErrorInHere(), at 0x115ec
 [5] Call2(0xefffefc8, 0xefffefa8, 0xefffef88, 0x0, 0xef74dd58, 0x0), at 0x11624
 [6] Call1(0x25400, 0x25800, 0x25b80, 0x25b80, 0x3, 0x0), at 0x11660
 [7] program(0x1, 0xeffff0fc, 0x4, 0xef7d0000, 0x2, 0xef74dae8), at 0x116a4
 [8] main(0x1, 0xeffff0fc, 0xeffff104, 0x25000, 0x0, 0x0), at 0x116e0
detaching from process 17266

16 Pascal 4.0 User’s Guide

2

Try compiling SegViol.p with –g :

The program prints the ASCII values of character variables.

If you compile some modules with –g and others without, the line numbers
may not be accurate for all the routines.

hostname% pc -g SegViol.p
hostname% a.out

*** a.out terminated by signal 11: segmentation violation
*** Traceback being written to a.out.trace
Abort (core dumped)

hostname% more a.out.trace

*** Stacktrace of a.out
*** Program terminated due to segmentation violation
 [3] __PC0__sigdie(0xb, 0xefffedf0, 0xefffec30, 0x0, 0x1, 0x0), at 0x12128
 ---- called from signal handler with signal 11 (SIGSEGV) ------
 [4] ErrorInHere(), line 12 in “SegViol.p”
 [5] Call2(), line 18 in "SegViol.p"
 [6] Call1(), line 21 in "SegViol.p"
 [7] program(), line 25 in "SegViol.p"
detaching from process 17285

17

The Pascal Compiler 3

The name of the Pascal compiler is pc . If you give pc a file name as an
argument, and the file name ends with .p or .pas , pc compiles the file and
leaves the result in an executable file, called a.out by default.

The syntax of this command is:

pc [options] filename

This chapter contains the following sections:

pc Version Number
To identify the version number of pc when you compile your program, call the
compiler with the –V option. This option instructs the compiler to produce
output that identifies the versions of all the programs used in compiling, the
compiler itself, the code generator, and so on.

pc Version Number page 17

Compile and Link Sequence page 18

Language Preprocessor page 19

File Name Extensions Accepted By pc page 20

Option-Passing on the Command-Line page 21

Option-Passing in the Program Text page 21

Options page 23

18 Pascal 4.0 User’s Guide

3

To identify the version number given an executable or object file created by the
Pascal compiler, use the following command.

Compile and Link Sequence
You can compile the file any.p with the following command-line:

hostname% pc any.p

This command actually invokes the compiler driver, which calls several
programs or passes of the program, each of which processes the program. The
output of each pass is the input to the next one.

After several passes, the object file any.o is created. An executable file is then
generated with the default name a.out . Finally, the file any.o is removed.

pc calls:

• cpp , the C preprocessor or cppas , the preprocessor used when you use the
-xl option

• pc0 , the Pascal front end

• The global optimizer if you use the -O option

• cg , the code generator, which generates the relocatable object file

• pc3 , which checks for conflicts in symbol names

• ld , the linker, which generates the executable files using any libraries
necessary to resolve undefined symbols

The above is the default action of pc ; some compiler options change what pc
calls.

hostname% mcs -p a.out | grep Pascal
SC4.0 18 Mar 1995 Pascal 4.0

The Pascal Compiler 19

3

Figure 3-1 shows the sequence of events when you invoke pc .

Figure 3-1 Organization of Pascal Compilation

Language Preprocessor
The cpp (1) program is the C language preprocessor. The compiler driver pc
normally calls cpp (1) during the first pass of a Pascal compilation. If you use
the –xl switch, pc calls the alternate preprocessor cppas . Then cpp (1) and
cppas operate on files that contain the extension .p or .pas .

You can give directives to cpp (1) or cppas to define constants, conditionally
compile parts of your program, include external files, and take other actions.
For example, the following program shows the use of an include directive,
which asks cpp (1) to copy the named file into the program before compilation.

Compiler
pc

Optimizer
iropt

Compiler
frontend

pc0

Source and
include files

Compiler
preprocessor
cpp or cppas

Code
generator

cg

Symbol con-
flict checking

pc3

Libraries

Link
editor

ld

Executable
a.out

Optimize with

-O[level] option

20 Pascal 4.0 User’s Guide

3

See the man page for cpp (1) for information on its directives and other
features. Appendix A, “Pascal Preprocessor,” describes cppas .

File Name Extensions Accepted By pc

Pascal source files generally use the extension .p . The compiler recognizes
other file name extensions. Table 3-1 lists the most important extensions.

The table notes that pc can produce assembler source files as well as unlinked
object files. In each case, you can pass these partially compiled files to pc ,
which then finishes the compilation, linking, and loading.

program showinclude;
#include "file.i"
begin
...
end.

Table 3-1 File Name Suffixes Recognized by Pascal

Suffix Description

.p Usual extension for Pascal source files.

.pas Valid extension for a Pascal source file. The extension instructs pc
to put object files in the current directory. The default name of the
object file is the name of the source file, but with a .o suffix.

.pi Default extension for Pascal source files that have been processed by
the Pascal preprocessor (either cpp or cppas).

.s Extension for assembler source files that are produced when you call
pc with the -S option.

.o Extension for object files that are generated by the compiler when
you call pc with the -c option.

The Pascal Compiler 21

3

Option-Passing on the Command-Line
To pass an option on the command-line, use a dash (-) followed by the option
name. In some cases, you must supply additional information, such as a file
name. For example, this command activates the listing option -l , which is off
by default:

hostname% pc -l rmc.p

The following command causes the generated object file to be named rmc
instead of the default, a.out .

hostname% pc -o rmc rmc.p

Option-Passing in the Program Text
Some options can be passed to the compiler in program text as well as on the
command-line. With this facility, you can use different option values for
different parts of a program.

Here are four examples of how options can be passed in program text:

{$P+}

{$H*}

(*$I-*)

{$l+,L-,n+}

Table 3-2 shows the options that can be passed in program text.

Table 3-2 Options That Can Be Passed in Program Text

Option Description

b Uses buffering of the file output.

C Uses runtime checks (same as t).

calign Uses C data formats.

H Uses check heap pointers.

l Makes a listing.

L Maps identifiers and keywords to lowercase.

p Uses statement limit counting (different from command-line p1). See
stlimit in the Pascal 4.0 Reference Manual.

22 Pascal 4.0 User’s Guide

3

You set options within comments, which can be delimited by either { and } or
(* and *) . The first character in the comment must be the $ (dollar sign). $
must be immediately followed by an option letter. Next must be either +, - , or
* .

If you want to set more than one option, you can insert a comma after the first
option, followed by another option letter and +, - , or * . You can set any
number of options on a single line. There must be no embedded spaces. You
can place spaces and other ordinary comment text after the last +, - , or * .

The new option setting takes effect at the next noncomment token.

The symbols + (plus sign) and - (minus sign) turn the option on and off,
respectively. To understand the symbol * , you must know how options work
in Pascal.

Except for b, each option in Table 3-2 has a current value and a “first in, last
out” stack of up to 16 values. Again, except for b, each option can be on or off.

When you begin compiling a program, each stack is empty and each option has
an initial current value, which may be the option default value or may have
been set on the command line.

1. The options p and t are different when they are used within program text and when they are used on the
command-line because they are received directly by pc0 when they are used in program text, while the
compiler driver gives them to other compiler passes when they are given on the command-line. If you want
to set them on the command-line and also want them to have the same effect as passing them in program
text, use the Qoption command-line option to pass them directly to pc0 .

P Uses partial evaluation of boolean expressions.

t Uses runtime checks (same as C, but different from the command-line t 1).

u Trims to 72-character line (not usable on command-line).

w Prints warning diagnostics.

Table 3-2 Options That Can Be Passed in Program Text (Continued)

Option Description

The Pascal Compiler 23

3

If no values have been pushed onto the stack, the effect of * is undefined.

Figure 3-2 illustrates how options are passed in program text.

Figure 3-2 Options in Program Text

Options
This section describes all the pc command options in alphabetical order.
Unless otherwise stated at the beginning of the description for the option, all of
these options work for both the Solaris 1.x and Solaris 2.x environments.

In general, processing of the compiler options is from left to right, so selective
overriding of macros can be done. This rule does not apply to linker options.

When the compiler encounters an
option followed by... This is what happens...

+ The current value is pushed onto the stack, and
the current value becomes ON.

- The current value is pushed onto the stack, and
the current value becomes OFF.

* The last value is popped off the stack and
becomes the current value.

program options (output);
begin
{$l+ Turns on listing}

writeln ('After $l-');
{$l- Turns off listing}
{Notice that this line prints.}

writeln ('After $l+');
{$l* Turns listing on again}
{Notice that this line does not print.}

writeln ('After $l*')
end.

hostname% pc options.p
Fri Mar 1 17:33:18 1995 options.p:
 4 writeln ('After $l-');
 5 {$l- Turns off listing}
 6 {Notice that this line prints.}
 10 writeln ('After $l*')
 11 end.

Program : Output :

24 Pascal 4.0 User’s Guide

3

–a

The –a option is the old style of basic block profiling for tcov . See
-xprofile=tcov for information on the new style of profiling and the
tcov (1) man page for more details. Also see the manual, Profiling Tools.

The –a option inserts code to count how many times each basic block is
executed. It also calls a runtime recording mechanism that creates a .d file for
every .p file at normal termination. The .d file accumulates execution data for
the corresponding source file. The tcov (1) utility can then be run on the
source file to generate statistics about the program.

If set at compile-time, the TCOVDIR environment variable specifies the
directory of where the .d files are located. If this variable is not set, then the
.d files remain in the same directory as the .f files.

The -xprofile=tcov and the -a options are compatible in a single
executable. That is, you can link a program that contains some files which
have been compiled with -xprofile=tcov , and others with -a . You cannot
compile a single file with both options.

–Bbinding

The –B option specifies whether libraries for linking are static (not shared,
indicated with -Bstatic), or dynamic (shared, indicated with -Bdynamic).

Link editing is the set of operations necessary to build an executable program
from one or more object files. Static linking indicates that the results of these
operations are saved to a file. Dynamic linking refers to these operations when
performed at runtime. The executable that results from dynamic linking
appears in the running process, but is not saved to a file.

–b

It is inefficient for Pascal to send each character to a terminal as it generates its
output. It is even less efficient if the output is the input of another program,
such as the line printer daemon, lpr (1).

To gain efficiency, Pascal buffers output characters; it saves the characters in
memory until the buffer is full and then outputs the entire buffer in one system
interaction. By default, Pascal output is line-buffered.

The Pascal Compiler 25

3

The –b option on the command-line turns on block-buffering with a block size
of 1,024. You cannot turn off buffering from the command-line.

If you give the –b option in a comment in the program, you can turn off
buffering or turn on block buffering. The valid values are:

Any number greater than 2 (for example, {$b5}) is treated as {$b2} . You can
only use this option in the main program. The block buffering value in effect
at the end of the main program is used for the entire program.

-bsdmalloc

(Solaris 1.x only) The -bsdmalloc option specifies faster malloc and uses the
more efficient malloc from the library, libbsdmalloc.a . This option also
causes the flags, -u _malloc /lib/libbsdmalloc.a , to be passed to the
linker.

–C

The –C option enables runtime checks that verifies that:

• Subscripts and subranges are in range.

• The number of lines written to output does not exceed the number set by
the linelimit procedure. (See the Pascal 4.0 Reference Manual for
information on linelimit .)

• Overflow, underflow, and divide-by-zero do not exist.

• The assert statement is correct. (See the Pascal 4.0 Reference Manual for
information on assert .)

If you do not specify –C, most runtime checks are disabled, and pc treats the
assert statement as a comment and never uses calls to the linelimit
procedure to halt the program. However, divide-by-zero checks are always
made.

The –V0 and –V1 options implicitly turn on –C.

{$b0} No buffering

{$b1} Line buffering

{$b2} Block buffering. The block size is 1,024.

26 Pascal 4.0 User’s Guide

3

–c

The –c option instructs the compiler not to call the linker, ld (1). The Pascal
compiler, pc , leaves a .o or object file for each source file. Without –c , pc calls
the linker when it finishes compilation, and produces an executable file, called
a.out by default.

-calign

The -calign option instructs the compiler to allocate storage in records the
same way as the C compiler allocates structures. See the Pascal 4.0 Reference
Manual for details of how data is aligned with and without -calign .

You can use calign within a program as well as on the command-line.
However, calign only has an effect in the type and var sections of the
program. Any types you define when calign is on use C-style alignment
whenever you define variables of that type.

–cg89

(Solaris 1.x only) The –cg89 option generates code to run on generic SPARC
architecture.

(Solaris 2.x only) This option is a macro for:
-xarch=v7 -xchip=old -xcache=64/32/1 .

–cg92

(Solaris 1.x only) The –cg92 option generates code to run on SPARC V8
architecture.

(Solaris 2.x only) This option is a macro for:
-xarch=v8 -xchip=super -xcache=16/64/4:1024/64/1

-cond

You can only use this option when you also use the -xl option.

The Pascal Compiler 27

3

The –cond option instructs pc to compile the lines in your program that begin
with the %debug compiler directive. If you compile your program without
–cond , pc treats lines with the %debug directive as comments.

–xl runs your program through the preprocessor cppas , which handles the
Apollo DOMAIN®-style Pascal compiler directives, such as %debug.

See Appendix A, “Pascal Preprocessor,” for a complete description of
conditional variables, cppas , and compiler directives.

–config

You can only use this option when you also use the -xl option.

The –config option sets a conditional variable to true . You can only use this
option when you use the preprocessor cppas , which is invoked when you use
the -xl option.

Pascal supports the –config option with only one value. For example, Pascal
accepts –config one , but not –config one two . To specify more than one
variable, use multiple –config options on the command-line.

If you use -config but do not give a variable, the value of the predefined
conditional variable %config is set to true .

–xl runs your program through the preprocessor cppas , which handles the
Apollo DOMAIN-style Pascal compiler directives, such as %config .

See Appendix A, “Pascal Preprocessor,” for a complete description of conditional
variables, cppas , and compiler directives.

–Dname[= def]

The –D option defines a symbol name to the C preprocessor, cpp . It is
equivalent to using the #define statement in your program. If you do not
include a definition, name is defined as 1. See cpp (1) for more information.

If you use this option with the -xl option, -D is equivalent to using the
%config directive in your program.

28 Pascal 4.0 User’s Guide

3

–dalign

The –dalign option instructs the compiler to generate double load and store
instructions wherever possible for faster execution. All double-typed data
become double-aligned, so do not use this option when correct alignment is
not ensured.

-dn

(Solaris 2.x only) The -dn option specifies static linking in the link editor.

-dryrun

The –dryrun option instructs the compiler to show, but not execute, the
commands constructed by the compilation driver. You can then see the order
of execution of compiler passes without actually executing them.

-dy

(Solaris 2.x only) The -dy option specifies dynamic linking in the link editor.

–fast

(Solaris 1.x only) The –fast option selects optimum compilation options for
speed and provides close to the maximum performance for most realistic
applications. A convenience option, it chooses the fastest code generation
option available on the compile-time hardware, the optimization level -02 , the
-dalign option, and a set of inline expansion templates. If you combine -
fast with other options, the last specification applies.

(Solaris 2.x only) The -fast option includes -fns -ftrap=%none ; that is, it
turns off all trapping. In previous releases, the -fast macro option included
-fnonstd; now it does not.

-fast includes -native in its expansion.

The code generation option, the optimization level, and using inline template
files can be overridden by subsequent switches. For example, although the
optimization part of -fast is -O2 , the optimization part of -fast -03 is -03 .

The Pascal Compiler 29

3

Do not use this option for programs that depend on IEEE standard exception
handling; you can get different numerical results, premature program
termination, or unexpected SIGFPE signals.

Note – The criteria for the -fast option vary with the compilers from SunSoft:
C, C++, FORTRAN 77, Fortran 90, and Pascal. See the appropriate
documentation for the specifics.

-fnonstd

The -fnonstd option causes nonstandard initialization of floating-point
arithmetic hardware. By default, IEEE 754 floating-point arithmetic is nonstop,
and underflows are gradual. (See the Numerical Computation Guide for details.)
The –fnonstd option causes hardware traps to be enabled for floating-point
overflow, division by zero, and invalid operation exceptions. These hardware
traps are converted into SIGFPE signals, and if the program has no SIGFPE
handler, it terminates with a memory dump.

-fnonstd also causes the math library to be linked in by passing -lm to the
linker.

(Solaris 2.x only) This option is a synonym for -fns -ftrap=common .

–fns

(Solaris 2.x only) The -fns option turns on the SPARC non-standard floating-
point mode.

The default is the SPARC standard floating-point mode.

If you compile one routine with -fns , then compile all routines of the program
with the –fns option; otherwise, unexpected results may occur.

–fround= r

(Solaris 2.x only) The -fround= r option sets the IEEE 754 rounding mode that
is established during program initialization.

r must be one of: nearest , tozero , negative , positive .

30 Pascal 4.0 User’s Guide

3

The default is -fround=nearest .

The meanings are the same as those for the ieee_flags subroutine.

If you compile one routine with -fround= r, compile all routines of the
program with the same –fround= r option; otherwise, unexpected results may
occur.

–ftrap= t

(Solaris 2.x only) The -ftrap= t option sets the IEEE 754 trapping mode in
effect at startup.

t is a comma-separated list of one or more of the following: %all , %none,
common, [no%]invalid , [no%]overflow , [no%]underflow , [no%]division ,
[no%]inexact . The default is -ftrap=%none .

This option sets the IEEE 754 trapping modes that are established at program
initialization. Processing is left-to-right. The common exceptions, by definition,
are invalid, division by zero, and overflow.

Example: -ftrap=%all,no%inexact means set all traps, except inexact .

The meanings are the same as for the ieee_flags function, except that:

• %all turns on all the trapping modes.
• %none, the default, turns off all trapping modes.
• A no%prefix turns off that specific trapping mode.

If you compile one routine with -ftrap= t, compile all routines of the program
with the same -ftrap= t option; otherwise, unexpected results may occur.

-G

(Solaris 2.x only) The -G option builds a shared library. All object files specified
with this command option should have been compiled with either the -pic or
the -PIC option.

The Pascal Compiler 31

3

–g

The –g option instructs pc to produce additional symbol table information for
dbx and debugger . With -g , the incremental linker, ild , is called, instead of
ld .

You can compile using both the -g and -O options. However, there are some
side effects:

• The next and step commands do not work, but the cont command does.

• If you have makefiles that rely on -g overriding -O , you must revise those
files.

• If you have makefiles that check for a warning message that -g overrides
-O , you must revise those make files.

Note – Special case: -04 -g . The combination -04 -g turns off inlining that
you usually get with -04 .

–H

The –H option instructs pc to compile code to perform range-checking on
pointers into the heap. This option is implicitly turned on by the –V0 and –V1
options.

-h name

(Solaris 2.x only) The -h name option names a shared dynamic library and
provides a way to have versions of a shared dynamic library.

This is a loader option, passed to ld . In general, the name after -h should be
exactly the same as the one after -o . A space between the -h and name is
optional.

The compile-time loader assigns the specified name to the shared dynamic
library you are creating. It records the name in the library file as the intrinsic
name of the library. If there is no -h name option, then no intrinsic name is
recorded in the library file.

32 Pascal 4.0 User’s Guide

3

Every executable file has a list of needed shared library files. When the
runtime linker links the library into an executable file, the linker copies the
intrinsic name from the library into that list of needed shared library files. If
there is no intrinsic name of a shared library, then the linker copies the path of
the shared library file instead.

–help or -flags

The –help or -flags option lists and summarizes all available options.

–I pathname

The –I option gives the preprocessor additional places to look for #include
and %include files. For example,

hostname% pc -I/home/incfiles -I/usr/incfiles program.p

The preprocessor searches for #include and %include files in this order:

1. In /opt/SUNWspro/SC4.0/include/pascal

2. In the directory containing the source file, except when you use the
#include < file> form, in which case this directory is not searched

3. In directories named with –I options, if any, in left to right order

4. In /usr/include

–i name

The –i option produces a listing for the specified procedure, function,
#include , or %include file. For example, this command instructs the
compiler to make a listing of the routines in the file scanner.i .

hostname% pc –i scanner.i program.p

See cpp (1), or Chapter 4, “Program Construction and Management,” or
Chapter 5, “Separate Compilation,” for information on include files.

-keeptmp

The -keeptmp option keeps temporary files that are created during
compilation, so they are retained instead of being deleted automatically.

The Pascal Compiler 33

3

–L

The –L option maps all keywords and identifiers to lowercase. In Pascal,
uppercase and lowercase are not interchangeable in identifiers and keywords.
In standard Pascal, the case is insignificant outside of character strings and
character constants. The –L option is most useful for transporting programs
from other systems. See also the –s option.

–l

The –l option produces a listing of the program. For example:

The first line identifies the version of the compiler you are using. The next line
gives the modification time of the file being compiled. The remainder of the
listing is the source program.

-L directory

The -L directory option adds directory to the ld library search path for ld .

hostname% pc -l random.p
Pascal PC -- Version SC4.0 09 Jan 1995 Pascal 4.0

Mon Jan 09 09:04 1995 random.p:
1 program random_number(output);
2 var
4 i: integer;
5 x: integer;
6
7 begin
8 for i := 1 to 5 do begin
9 write(trunc(random(x) * 101))
10 end;
11 writeln
12 end.

34 Pascal 4.0 User’s Guide

3

-libmieee

Forces IEEE 754 style return values for math routines in exceptional cases. In
such cases, no exception message is printed, and errno is not set.

–libmil

The –libmil option instructs the compiler to select the best inline templates
for the floating-point option and operating system release available on this
system.

–l lib

The –l lib option links ld (1) with the object library, lib.

Do not use the -lucb option because Pascal is not compatible with the object
library, libucb .

–misalign

The –misalign option allows for misaligned data in memory. Use this option
only if you receive a warning message that your data is misaligned.

With the –misalign option, pc generates much slower code for references to
formal parameters. If possible, recode the indicated section instead of
recompiling your program with this option.

-mt

The -mt option uses multithread-safe libraries, eliminates conflicts between
threads, so that Pascal library routines can be safely used in a multiprocessing
environment.

The MT-safe library for Pascal is called libpc_mt .

On a single-processor system, the code that is generated with this option runs
more slowly; the degradation in performance is usually insignificant, however.

Refer to the Multithreaded Programming Guide in the Solaris documentation for
more information.

The Pascal Compiler 35

3

–native

The –native option causes pc to generate code for the best floating-point
hardware available on the machine you are compiling on.

The -fast macro includes -native in its expansion.

(Solaris 2.x only) This option is a synonym for -xtarget=native .

-nocx

(Solaris 1.x only) The -nocx option makes the output executable file about
128K bytes smaller by not linking with the -lcx option. However, the
runtime performance and accuracy of binary-decimal base conversion is
somewhat compromised.

-nolib

The -nolib option instructs the compiler not to link any libraries by
default—that is, no -l options are passed to ld . Normally, the pc driver
passes -lc to ld .

When you use -nolib , pass all -l options yourself. For example, the
following command links libm statically and the other libraries dynamically:

hostname% pc -nolib -Bstatic -lm -Bdynamic -lc test.p

–nolibmil

The –nolibmil option instructs the compiler to reset –fast so that it does not
include inline templates. Use this option after the –fast option, as in:

hostname% pc –fast –nolibmil myprog.p

-noqueue

The -noqueue option instructs the compiler not to queue this compilation if a
license is not available. Under normal circumstances, if no license is available,
the compiler waits until one becomes available. With this option, the compiler
returns immediately.

36 Pascal 4.0 User’s Guide

3

-notrace

The -notrace option disables runtime traceback. It is only effective when
compiling the main program.

–O[level]

The –O option instructs the compiler to run the compiled program through the
object code optimizer. The –O option also calls the –P option, which ensures
boolean expressions are only evaluated as much as needed to determine the
result. This process causes an increase in compile time in exchange for a
decrease in compiled code size and execution time.

There are four levels of optimization. You indicate the level by specifying a
digit from 1 to 4 after the –O option. If you leave out the digit, the
optimization level defaults to –O2.

The level numbers are interpreted as follows:

–O
This is the most likely level of optimization to give fastest performance
for most reasonable applications. The default is –O2.

–O1,-xO1
This is the minimum amount of optimization (peephole) and is postpass
assembly-level. Do not use –O1 unless -O2 and -O3 result in excessive
compilation time or shortage of swap space.

–O2, -xO2
This is the basic local and global optimization—induction-variable
elimination, local and global common subexpression elimination,
algebraic simplification, copy propagation, constant propagation, loop-
invariant optimization, register allocation, control-flow optimization,
tail-recursion elimination, dead-code elimination, and tail-call
elimination.

Level -O2 does not optimize references to or definitions of external or
indirect variables. This level is the appropriate level for device drivers
and programs that modify external variables from within signal
handlers.

The Pascal Compiler 37

3

–O3, -xO3
Same as -O2 , but optimizes the uses and definitions of external variables.
Level -O3 does not trace the effects of pointer assignments. Do not use
Level -O3 when compiling device drivers or programs that modify
external variables from within signal handlers.

–O4, -xO3
Same as -O3 , but traces the effects of pointer assignments and gathers
alias information. Do not use Level -O4 when compiling device drivers
or programs that modify external variables from within signal handlers.

-O5 , -xO5
(Solaris 2.x only) Generates the highest level of optimization. This level
uses optimization algorithms that take more compilation time or that do
not have as high a certainty of improving execution time.

Optimization at this level is more likely to improve performance if it is
done with profile feedback. See -xprofile .

Note – Levels -O3 and -O4 may result in an increase in the size of the
executables. When optimizing for size, use level -O2 . For most programs,
–O4 is faster than –O3, which is faster than –O2, which is faster than –O1.
However, in a few cases –O2 may be faster than the others, and –O3 may be
faster than –O4. You can try compiling with each level to see if you have one
of these rare cases.

If the optimizer runs out of memory, it tries to recover by retrying the current
procedure at a lower level of optimization, then resumes subsequent
procedures at the original level specified in the –O command-line option.

If you optimize at –O3 or –O4 with very large procedures (thousands of lines of
code in a single procedure), the optimizer may require an unreasonable
amount of memory. Such cases may result in degraded machine performance.

You can prevent this from happening in the C shell by limiting the amount of
virtual memory available to a single process. To do this, use the limit
command (see csh (1)).

For example, to limit virtual memory to 16 megabytes:

hostname% limit datasize 16M

38 Pascal 4.0 User’s Guide

3

This command causes the optimizer to try to recover if it reaches 16 megabytes
of data space.

This limit cannot be greater than the machine’s total available swap space, and
in practice, should be small enough to permit normal use of the machine while
a large compilation is in progress. For example, on a machine with 32
megabytes of swap space, the command limit datasize 16M ensures that
a single compilation never consumes more than half of the machine’s swap
space.

The best setting of data size depends on the degree of optimization requested
and the amount of real memory and virtual memory available. To find the
actual swap space:

hostname% /usr/sbin/swap -s

To find the actual real memory:

hostname% /usr/sbin/prtconf | grep Memory

–o filename

The –o option instructs the compiler to name the generated executable,
filename. The default file name for executable files is a.out ; for object files, it
is the source file name with a .o extension. For example, the following
command stores the executable in the file, myprog :

hostname% pc -o myprog myprog.p

If you use this option with the -c option, the name you give is used as the
name for the object file. The default file name for object files is the source file
name with a .o extension. You cannot give the object file the same name as
the source file.

–P

The –P option causes the compiler to use partial evaluation semantics on the
boolean operators, and and or . Left-to-right evaluation is guaranteed, and
the second operand is evaluated only if necessary to determine the result.

The Pascal Compiler 39

3

–p and –pg

The –p and –pg options instruct the compiler to produce code that counts the
number of times each routine is called. The profiling is based on a periodic
sample taken by the system, rather than by line counters.

Using the -p Option

To generate an execution profile using the –p option:

1. Compile with the –p option.

2. Run a.out , which produces a mon.out executable file.

3. Type prof a.out . The program prints a profile.

Using the -pg Option

To generate an execution profile using the –pg option:

1. Compile with the –pg option.

2. Run a.out , which produces a gmon.out executable file, a more
sophisticated profiling tool than mon.out .

3. Type gprof a.out . The program prints a profile.

–pic , -Kpic and –PIC , -KPIC

The -pic and -PIC options cause the compiler to generate position-
independent code (PIC). One of these options should be used for objects
which are then put into shared libraries. With PIC, each reference to a global
datum is generated as a dereference of a pointer in the global offset table. Each
function call is generated in pc -relative addressing mode through a procedure
linkage table.

The size of the global offset table is limited to 8Kbytes with -pic . The -PIC
option expands the global offset table to handle 32-bit addresses for those rare
cases where there are too many data objects for -pic .

For more information on PIC , see the section on shared libraries in the Solaris
documentation.

40 Pascal 4.0 User’s Guide

3

–Qoption

The –Qoption passes an option to the program. The option value must be
appropriate to that program and can begin with a plus or minus sign. The
program value can be either as (1) (Solaris 1.x only), fbe (1) (Solaris 2.x only),
cpp (1), cppas , inline (1), iropt , ld (1), pc0 , or pc3 . For example, the
following command passes the option -R to cpp and allows recursive macros:

hostname% pc -Qoption cpp -R myprog.p

–Qpath pathname

The –Qpath option inserts a path name into the compilation search path, hence
providing an alternate path to search for each compiler component. You can
select this option, for instance, to use a different linker or assembler. In the
following command, pc searches /home/pascal/sparc for the compiler
components and uses them if it finds them; if pc does not find the specified
components, it uses the default components:

hostname% pc -Qpath /home/pascal/sparc testp.p

–Qproduce

The –Qproduce option instructs pc to produce source code of the type
sourcetype, which can be one of the following:

For example, the following command produces the file, hello.s :

hostname% pc -Qproduce .s hello.p

-qp

The -qp option is the same as -p option.

.o Object file from as (1)

.pi Preprocessed Pascal source from cpp (1)

.s Assembler source. This option is the same as the -S option.

The Pascal Compiler 41

3

-R

(Solaris 1.x only) The –R option instructs pc to call the assembler, as (1). This
option merges the data segment of the resulting program with the text
segment. See also -xMerge (Solaris 2.x only).

-R path[: dir]

(Solaris 2.x only) The -R path[: dir] option passes a colon-separated list of
directories that specify the library search path used by the runtime linker. If
present and not null, it is recorded in the output object file and passed to the
runtime linker.

If both LD_RUN_PATH and the -R option are specified, the -R option takes
precedence.

-Rw

The -Rw option checks and issues warnings on record fields which are used,
but not set.

By default, the Pascal compiler generates warnings of this kind for whole
variables, but not for fields.

This option works only for local record variables that are defined in procedures
or functions, not for global variables, that is, variables that are in the main
program or in a separately compiled module. This is because global variables
may appear to be initialized not in the main program itself, but in some
procedure or function that is compiled separately, which is subsequently
linked to the executable program.

This option is suppressed when the -Z option is on. See “–Z” on page 66. In
this case, all local variables and their components are initialized by zero values.

When this option is on, the compiler performs a full analysis (as far as possible
at compile time) of how record fields are assigned and used. Warnings contain
full access constructs for fields which are used, but not set, for example,
V.F1.F2^.F3 .

42 Pascal 4.0 User’s Guide

3

The compiler issues warnings at the end of the procedure where the record
variables are defined, that is, when some of the fields are definitely not set.
However, no warnings are issued if fields are used in the source before they are
initialized, as the control flow may be different.

In some cases, it is not possible to determine at compile time whether the fields
have actually been initialized. For example:

• For the array variable V, whose elements are records, if any assignment of
the kind V[i]:= X or V[i].F:= Y occurs, the compiler considers the
corresponding fields of V[i] for all values of i to be initialized. If such a
field is used, but not set, it is denoted as V[...].F in the warning message.

• All formal parameters are assumed to be initialized. Consequently, the
compiler does not perform any checking for these component fields.

With the -Rw option, the compiler takes into account built-in procedures which
initialize their argument variables, for example, reset(f) for the file buffer
variable f^ and its components. rewrite(f) does not initialize f^ . The
compiler also examines field handling inside WITH statements.

Use the -Rw option to check the use of “unsafe” variant records, such as the
assignment of a variant to a field, or the use of another field from a “parallel”
variant. These practices may result in runtime errors which are hard to find.

Note – The -Rw option requires extra compile-time, and is, therefore,
recommended for use in debugging only.

The Pascal Compiler 43

3

Examples:

The Pascal main program, r.p
(record and array of records)

program p;
procedure qq;
type compl = record re, im: integer end;
 arc = array[1..2] of compl;
var z: compl;
 a: arc;
begin
writeln(z.im);
writeln(a[1].re);
end;
begin
end.

The commands to compile r.p
and the -Rw warnings that are
issued

hostname% pc -Rw r.p
Fri Jan 27 17:35:50 1995 r.p:
In procedure qq:
w 18280 field z.im is used but never set
w 18280 field a[...].re is used but never set

The Pascal main program,
rr.p (two records)

program p;
type r = record a,b: integer end;
procedure qq;
var r1, r2: r;
var i: integer;
begin
 i:=r1.a;
 i:=r2.a;
 i:=r1.b;
 i:=r2.b;
end;
begin
 qq;
end.

44 Pascal 4.0 User’s Guide

3

The commands to compile
rr.p and the -Rw warnings
that are issued

hostname% pc -Rw rr.p
Mon Feb 20 14:59:04 1995 pas/rr.p:
In procedure qq:
w 18280 field r1.b is used but never set
w 18280 field r1.a is used but never set
w 18280 field r2.b is used but never set
w 18280 field r2.a is used but never set

The Pascal main program,
recvar.p (variant record)

program p;
procedure qq;
type r = record

 x,y: integer;
 case integer of
 0:(a: integer);
 1: (b: char);

end;
var v: r;
begin
 v.x:= 1;
 writeln(v.y);
end;
begin
qq;
end.

The commands to compile
recvar.p

hostname% pc -Rw recvar.p
Mon Feb 20 15:55:18 1995 recvar.p:
In procedure qq:
w 18260 field v.a is neither used nor set
w 18260 field v.b is neither used nor set
w 18280 field v.y is used but never set
hostname% a.out
 0

The Pascal Compiler 45

3

The Pascal main program,
with.p (with statement)

program p;
type C = record re, im: integer end;
 AC = array[1..2] of C;
 RC = record C1, C2: C end;
 PRC = ^RC;
procedure qq;
var
 c: C;
 ac: AC;
 rc: RC;
 prc: PRC;
begin
 ac[1]:= c;
 with ac[1] do
 begin
 re:= 1;
 writeln(im);
 end;
 with prc^.C1 do
 begin
 writeln(im);
 end;
end;
begin
qq;
end.

The commands to compile and
execute with.p

hostname% pc -Rw with.p
Mon Feb 20 16:28:34 1995 with.p:
In procedure qq:
w 18280 variable c is used but never set
w 18260 variable rc is neither used nor set
w 18280 field prc^.C1.im is used but never set
hostname% a.out
 0

*** a.out terminated by signal 11: segmentation violation
*** Traceback being written to a.out.trace
Abort (core dumped)

46 Pascal 4.0 User’s Guide

3

–S

The –S option compiles the program and outputs the assembly language in the
file, sourcefile.s . For example, the following command places the assembly
language translation of rmc.p in the file rmc.s . No executable file is created.

hostname% pc –S rmc.p

–s[level]

The –s option instructs the compiler to accept standard Pascal only. Pascal has
two levels of compliance with standard Pascal: Level 0 and Level 1. The only
difference between the two is that Level 1 also allows conformant arrays.

Specify the level of compliance as follows:

• –s0 Accept Level 0 compliance with standard Pascal
• -s or –s1 Accept Level 1 compliance with standard Pascal

This option causes many features of Pascal that are not found in standard
Pascal to be diagnosed with warning messages. These features include:

• Nonstandard procedures and functions
• Extensions to the procedure write
• Padding of constant strings with blanks
• Preprocessor directives

In addition, all letters, except character strings and constants, are mapped to
lowercase. Thus, the case of keywords and identifiers is ignored.

This option is most useful when a program is to be ported to other machines.

–sb

The –sb option produces a database for source browsing.

–sbfast

The –sbfast option performs the same task as -sb , but does not compile.

The Pascal Compiler 47

3

-tc

The -tc option instructs the compiler to generate pc3 stab information that
allows cross-module type checking.

This option can be used for two purposes:

• To check for any name conflicts that your program may have with the
standard libraries with which it is to be linked, such as libc . The linker
allows name conflicts, which may cause erroneous runtime behavior in your
program.

For example, the following program has a name conflict with libc :

When the program is compiled with the -tc option, pc3 issues a warning
that the name time is already defined as a libc routine. Running a.out
causes a core dump. To avoid this problem, change the name of the variable
that has the conflict—in this case, time .

• To check for possible name conflicts in the various modules of your
program. These conflicts arise if you define a routine with the same name in
several modules, or refer to an external, but undefined, variable. The linker
detects these error situations and does not create the executable file.

–temp= dir

The –temp option instructs pc to locate the temporary files that it creates
during compilation in the directory named dir. For example, the following
command puts the temporary files in the current directory.

hostname% pc -temp=. hello.p

If you do not specify a temporary directory, pc places the temporary files in
the /tmp directory.

 program p(output);
 var time: integer;
 begin
 writeln(wallclock);
 end.

48 Pascal 4.0 User’s Guide

3

–time

The –time option instructs the compiler to report execution performance
statistics for the various compilation passes. Here is some sample output;
some spaces have been removed so the output would fit on the page.

Each line begins with the name of the compiler pass. The rest of the line is
divided into four parts: time , core , io , and pf .

• time gives the time used by that pass of the compiler, in this order:

a. User time

b. System time

c. Total CPU time, which is the sum of user and system time

d. Real (clock) time

e. Percent of real time used by CPU time

• core gives memory usage statistics for the pass, in this order:

a. The first item is always 0, and currently has no meaning.

b. The second item is the integral resident set size.

• The io section gives the volume of input and output operations, expressed
in blocks.

• The pf section gives the amount of page faults, expressed in pages, in this
order:

a. Page faults not requiring physical I/O

b. Page faults requiring physical I/O

hostname% pc -time hello.p
cpp:time U:0.0s+S:0.1s=0.2s REAL:1.6s 11%. core T:0k D:0k. io IN:4b OUT:3b. pf IN:25p OUt:184p.
pc0:time U:0.0s+S:0.3s=0.4s REAL:3.2s 13%. core T:0k D:4k. io IN:4b OUT:4b. pf IN:70pOUT:131p.
cg: time U:0.0s+S:0.1s=0.2s REAL:2.0s 12%. core T:0k D:1k. io IN:2b OUT:1b. pf IN:39p OUT:163p.
as: time U:0.0s+S:0.2s=0.3s REAL:1.5s 19%. core T:0k D:1k. io IN:3b OUT:10b.pf IN:33pOUT:117p.
pc3:time U:0.1s+S:0.1s=0.3s REAL:0.9s 31%. core T:0k D:1k. io IN:7b OUT:0b. pf IN:20pOUT:109p.
ld:time U:0.8s+S:0.9s=1.8sREAL:10.2s 17%. core T:0k D:21k.io IN:74bOUT:29b.pf IN:89pOUT:184p.

The Pascal Compiler 49

3

–Uname

The –U option removes any initial definition of the cpp (1) symbol name. See
cpp (1) for more information. You cannot use this option with the -xl option.

–V

The –V option prints the version number of each compilation pass.

–V0 and –V1

The –V0 and –V1 options turn on sets of options that insert checks into the
object file, as follows:

–v

The –v (verbose) option prints the command line used to call each compilation
pass.

–w

By default, the compiler prints warnings about inconsistencies it finds in the
input program. The –w option turns off the warnings.

To turn off warnings in a program comment, use this command:

hostname% {$w-}

-xa

Same as -a .

-xarch= a

(Solaris 2.x only) The -xarch= a option limits the set of instructions the
compiler may use.

–V0 Equivalent to -C , -H , -L , and -s0

–V1 Equivalent to –C, –H, –L , and –s1

50 Pascal 4.0 User’s Guide

3

a must be one of: generic , v7 , v8 , v8a , v8plus , v8plusa .

Although this option can be used alone, it is part of the expansion of the
xtarget option; its primary use is to override a value supplied by the
xtarget option.

This option limits the instructions generated to those of the specified
architecture, and allows the specified set of instructions. It does not guarantee
an instruction is used; however, under optimization, it is usually used.

If this option is used with optimization, the appropriate choice can provide
good performance of the executable on the specified architecture. An
inappropriate choice can result in serious degradation of performance.

The Pascal Compiler 51

3

v7, v8, and v8a are all binary compatible. v8plus and v8plusa are binary
compatible with each other and forward, but not backward. For any particular
choice, the generated executable can run much more slowly on earlier
architectures (to the left in the above list).

Table 3-3 The -xarch Values

Value Meaning

generic Get good performance on most SPARCs, and major degradation on none.

This is the default. This option uses the best instruction set for good
performance on most SPARC processors without major performance
degradation on any of them. With each new release, this best instruction
set will be adjusted, if appropriate.

v7 Limit the instruction set to V7 architecture.

This option uses the best instruction set for good performance on the V7
architecture, but without the quad-precision floating-point instructions.
This is equivalent to using the best instruction set for good performance
on the V8 architecture, but without the following instructions:
 The quad-precision floating-point instructions
 The integer mul and div instructions
 The fsmuld instruction

Examples: SPARCstation 1, SPARCstation 2

v8a Limit the instruction set to the V8a version of the V8 architecture.

This option uses the best instruction set for good performance on the V8
architecture, but without:
 The quad-precision floating-point instructions
 The fsmuld instruction

Example: Any machine based on MicroSPARC I chip architecture

52 Pascal 4.0 User’s Guide

3

v8 Limit the instruction set to V8 architecture.

This option uses the best instruction set for good performance on the V8
architecture, but without quad-precision floating-point instructions.

Example: SPARCstation 10

v8plus Limit the instruction set to the V8plus version of the V9 architecture.

By definition, V8plus, or V8+, means the V9 architectue, except:
 Without the quad-precision floating point instructions
 Limited to the 32-bit subset defined by the V8+ specification
 Without the VIS instructions

This option uses the best instruction set for good performance on the V9
architecture. In V8+, a system with the 64-bit registers of V9 runs in 32-bit
addressing mode, but the upper 32 bits of the i and l registers must not
affect program results.

Example: Any machine based on UltraSPARC chip architecture.

Use of this option also causes the .o file to be marked as a Sun-specific
V8+ binary; such files will not run on a v7 or v8 machine.

v8plusa Limit the instruction set to the V8plusa version of the V9 architecture.

By defintion, V8plusa means the V8plus arcitecture, plus:
 The UltraSPARC-specific instructions
 The VIS instructions
This option uses the best instruction set for good performance on the
UltraSPARC™ architecture but limited to the 32-bit subset defined by the
V8+ specification.

Example: Any machine based on UltraSPARC chip architecture.

Use of this option also causes the .o file to be marked as a Sun-specific
V8+ binary; such files will not run on a v7 or v8 machine.

Table 3-3 The -xarch Values (Continued)

Value Meaning

The Pascal Compiler 53

3

-xcache= c

(Solaris 2.x only) The -xcache= c option defines the cache properties for use by
the optimizer.

c must be one of the following:

• generic
• s1/ l1/ a1
• s1/ l1/ a1: s2/ l2/ a2
• s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3

The si/ li/ ai are defined as follows:

Although this option can be used alone, it is part of the expansion of the -
target option; its primary use is to override a value supplied by the -
target option.

This option specifies the cache properties that the optimizer can use. It does not
guarantee that any particular cache property is used.

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

Table 3-4 The -xcache Values

Value Meaning

generic Define the cache properties for good performance on most SPARCs.

This is the default value which directs the compiler to use cache properties for good
performance on most SPARC processors, without major performance degradation on any
of them.

With each new release, these best timing properties will be adjusted, if appropriate.

s1/ l1/ a1 Define level 1 cache properties.

s1/ l1/ a1: s2/ l2/ a2 Define levels 1 and 2 cache properties.

s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3 Define levels 1, 2, and 3 cache properties

54 Pascal 4.0 User’s Guide

3

Example: -xcache=16/32/4:1024/32/1 specifies the following:

-xchip= c

(Solaris 2.x only) The -xchip= c option specifies the target processor for use by
the optimizer.

c must be one of: generic , old , super , super2 , micro , micro2 , hyper ,
hyper2 , powerup , ultra

Although this option can be used alone, it is part of the expansion of the -
target option; its primary use is to provide a value supplied by the -target
option.

This option specifies timing properties by specifying the target processor.

Some effects are:

• The ordering of instructions, that is, scheduling

• The way the compiler uses branches

• The instructions to use in cases where semantically equivalent
alternatives are available

Level 1 cache has:
 16K bytes
 32 bytes line size
 4-way associativity

Level 2 cache has:
 1024K bytes
 32 bytes line size
 Direct mapping associativity

Table 3-5 The -xchip Values

Value Meaning

generic Use timing properties for good performance on most SPARCs.

This is the default value that directs the compiler to use the best timing
properties for good performance on most SPARC processors, without
major performance degradation on any of them.

old Use timing properties of pre-SuperSPARC™ processors.

super Use timing properties of the SuperSPARC chip.

super2 Use timing properties of the SuperSPARC II chip.

micro Use timing properties of the MicroSPARC™ chip.

The Pascal Compiler 55

3

-xcg89

Same as -cg89 .

-xcg92

Same as -cg92 .

–xF

(Solaris 2.x only) The –xF option enables performance analysis of the executable
file using the SPARCworks Performance Analyzer and Debugger. This option
also causes the assembler to generate some debugging information in the
object file, necessary for data collection. The compiler generates code that can
be reordered at the function level. It takes each function in the file and places
it into a separate section. For example, functions fcn1() and fcn2() are
placed in the sections .text%fcn1 and .text%fcn2 . You can control the
order of functions in the final executable by using the –xF and the loader
–Mmapfile options.

In the map file, if you include the flag O in the string of segment flags, then the
static linker ld attempts to place sections in the order they appear in the map
file. See the Solaris documentation for details about this option, the segment
flags, and the map file.

micro2 Use timing properties of the MicroSPARC II chip.

hyper Use timing properties of the HyperSPARC™ chip.

hyper2 Use timing properties of the HyperSPARC II chip.

powerup Use timing properties of the Weitek® PowerUp™ chip.

ultra Use timing properties of the UltraSPARC chip.

Table 3-5 The -xchip Values (Continued)

Value Meaning

56 Pascal 4.0 User’s Guide

3

-xildoff

(Solaris 2.x only) Turns off the incremental linker and forces the use of ld . This
option is the default if you do not use the -g option, or you do not use the -G
option, or any source files are present on the command line. Override this
default by using the -xildon option.

-xildon

(Solaris 2.x only) Turns on the incremental linker and forces the use of ild in
incremental mode. This option is the default if you use the -g option, and you
do not use the -G option, and there are no source files present on the command
line. Override this default by using the -xildoff option.

–xl

The –xl option implements a set of features that provide broad compatibility
with Apollo Pascal. We recommend using –xl only when porting Pascal
systems from Apollo platforms to SPARC system platforms. See the Pascal 4.0
Reference Manual for details of the features controlled by -xl .

When you use -xl , the compiler invokes the cppas preprocessor in place of
cpp (1). See Appendix A, “Pascal Preprocessor,” for information on cppas .

Modules compiled with –xl are not compatible with modules compiled
without –xl . You should not link these two types of modules together.

-xlibmieee

Same as -libmieee .

-xlibmil

Same as -libmil .

The Pascal Compiler 57

3

-xlibmopt

Uses a math routine library optimized for performance. The results may be
slightly different than those produced by the normal math library. This option
is implied by the -fast option.

–xlicinfo

The -xlicinfo option returns information about the licensing system. In
particular, it returns the name of the license server and the IDs of users who
have licenses checked out. When you give this option, the compiler is not
invoked and a license is not checked out.

–xMerge

(Solaris 2.x only) The –xMerge option instructs pc to call the assembler, as (1),
with the –R option. This option merges the data segment of the resulting
program with the text segment. See also -R (Solaris 1.x only).

-xnolib

Same as -nolib .

-xnolibmopt

Resets -fast , and does not use the math routine library.

Use this option after the -fast option on the command-line, as in:
pc -fast -xnolibmopt

-x05

Optimizes the object code.

(Solaris 2.x) This option can be combined with –g , but not with –xa .

When -O is used with the -g option, a limited amount of debugging is
available.

58 Pascal 4.0 User’s Guide

3

Generates the highest level of optimization. Uses optimization algorithms that
take more compilation time or that do not have as high a certainty of
improving execution time. Optimization at this level is more likely to improve
performance if it is done with profile feedback. See -xprofile=p .

If the optimizer runs out of memory, it tries to recover by retrying the current
procedure at a lower level of optimization and resumes subsequent procedures
at the original level specified in the command-line option.

-xpg

Same as -p and -pg

-xprofile= p

(Solaris 2.x only) The -xprofile= p option collects data for a profile or use a
profile to optimize.

p must be collect , use[:name] , or tcov .

The Pascal Compiler 59

3

This option causes execution frequency data to be collected and saved during
execution, then the data can be used in subsequent runs to improve
performance.

Table 3-6 The -xprofile Values

Value Meaning

collect Collect and save execution frequency for later use by the optimizer.

The compiler inserts code to measure the execution frequency at a low
level. During execution, the measured frequency data is written into
.prof files that correspond to each of the source files.

If you run the program several times, the execution frequency data
accumulates in the .prof files; that is, output from prior runs is not lost.

use Use execution frequency data saved by the compiler.

Optimize by using the execution frequency data previously generated
and saved in the .prof files by the compiler.

The source files and the compiler options (excepting only this option),
must be exactly the same as for the compilation used to create the
compiled program that was executed to create the .prof files.

tcov Correctly collects data for programs that have source code in header files
or make use of C++ templates. See -a for information on the old style of
profiling, the tcov (1) man page, and the Profiling Tools manual for more
details.

Code instrumentation is performed similarly to that of -a , but .d files
are no longer generated. Instead, a single file is generated, whose name is
based off of the final executable. For example, if the program is run out
of /foo/bar/myprog , then the data file is stored in
/foo/bar/myprog.profile/myprog.tcovd .

When running tcov , you must pass it the -x option to make it use the
new style of data. If not, tcov uses the old .d files, if any, by default for
data, and produces unexpected output.

Unlike -a , the TCOVDIR environment variable has no effect at compile-
time. However, its value is used at program runtime.

60 Pascal 4.0 User’s Guide

3

-xregs= r

(Solaris 2.x only) The -xregs= r option specifies the usage of registers for the
generated code.

r is a comma-separated list that consists of one or more of the following:
[no%]appl , [no%]float .

Example: -xregs=appl,no%float

The default is -xregs=appl,float .

Table 3-7 The -xregs Values

Value Meaning

appl Allow using the registers g2 , g3 , and g4 .

In the SPARC ABI, these registers are described as application registers.
Using these registers can increase performance because fewer load and
store instructions are needed. However, such use can conflict with some
old library programs written in assembly code.

no%appl Do not use the appl registers.

float Allow using the floating-point registers as specified in the SPARC ABI.
You can use these registers even if the program contains no floating-
point code.

no%float Do not use the floating-point registers.

With this option, a source program cannot contain any floating-point
code.

The Pascal Compiler 61

3

–xs

(Solaris 2.x only) The -xs option disables Auto-Read for dbx in case you
cannot keep the .o files around. This option passes the -s option to the
assembler and the linker.

• No Auto-Read—This is the older way of loading symbol tables.
• The compiler instructs the linker to place all symbol tables for dbx in the

executable file.
• The linker links more slowly and dbx initializes more slowly.
• If you move the executables to another directory, then to use dbx you

must move the source files, but you need not move the object (.o) files.

• Auto-Read—This is the newer (and default) way of loading symbol tables.
• The compiler distributes this information in the .o files so that dbx loads

the symbol table information only if and when it is needed.
• The linker links faster and dbx initializes faster.
• If you move the executables to another directory, then to use dbx , you

must move both the source files and the object (.o) files.

-xsafe=mem

(Solaris 2.x only) The -xsafe=mem option allows the compiler to assume no
memory-based traps occur.

This option grants permission to use the speculative load instruction on V9
machines.

-xsb

Same as -sb .

-xsbfast

Same as -sbfast .

62 Pascal 4.0 User’s Guide

3

-xspace

(Solaris 2.x only) The -xspace option does no optimizations that increase the
code size.

Example: Do not unroll loops.

-xtarget= t

(Solaris 2.x only) The -xtarget= t option specifies the target system for the
instruction set and optimization.

t must be one of: native , generic , system-name.

The -xtarget option permits a quick and easy specification of the -xarch ,
-xchip , and -xcache combinations that occur on real systems. The only
meaning of -xtarget is in its expansion.

The performance of some programs may benefit by providing the compiler
with an accurate description of the target computer hardware. When program
performance is critical, the proper specification of the target hardware could be

Table 3-8 The -xtarget Values

Value Meaning

native Get the best performance on the host system.

The compiler generates code for the best performance on the host
system. It determines the available architecture, chip, and cache
properties of the machine on which the compiler is running.

generic Get the best performance for generic architecture, chip, and cache.

The compiler expands -xtarget=generic to:
-xarch=generic -xchip=generic -xcache=generic

This is the default value.

system-name Get the best performance for the specified system.

You select a system name from Table 3-9 that lists the mnemonic
encodings of the actual system names and numbers.

The Pascal Compiler 63

3

very important. This is especially true when running on the newer SPARC
processors. However, for most programs and older SPARC processors, the
performance gain is negligible and a generic specification is sufficient.

Each specific value for -xtarget expands into a specific set of values for the -
xarch , -xchip , and -xcache options. See Table 3-9 for the values. For
example:

-xtarget=sun4/15 is equivalent to:
-xarch=v8a -xchip=micro -xcache=2/16/1

Table 3-9 -xtarget Expansions

-xtarget -xarch -xchip -xcache

sun4/15 v8a micro 2/16/1

sun4/20 v7 old 64/16/1

sun4/25 v7 old 64/32/1

sun4/30 v8a micro 2/16/1

sun4/40 v7 old 64/16/1

sun4/50 v7 old 64/32/1

sun4/60 v7 old 64/16/1

sun4/65 v7 old 64/16/1

sun4/75 v7 old 64/32/1

sun4/110 v7 old 2/16/1

sun4/150 v7 old 2/16/1

sun4/260 v7 old 128/16/1

sun4/280 v7 old 128/16/1

sun4/330 v7 old 128/16/1

sun4/370 v7 old 128/16/1

sun4/390 v7 old 128/16/1

sun4/470 v7 old 128/32/1

sun4/490 v7 old 128/32/1

sun4/630 v7 old 64/32/1

64 Pascal 4.0 User’s Guide

3

sun4/670 v7 old 64/32/1

sun4/690 v7 old 64/32/1

sselc v7 old 64/32/1

ssipc v7 old 64/16/1

ssipx v7 old 64/32/1

sslc v8a micro 2/16/1

sslt v7 old 64/32/1

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/64/1

ssslc v7 old 64/16/1

ss1 v7 old 64/16/1

ss1plus v7 old 64/16/1

ss2 v7 old 64/32/1

ss2p v7 powerup 64/31/1

ss4 v8a micro2 8/64/1

ss5 v8a micro2 8/64/1

ssvyger v8a micro2 8/64/1

ss10 v8 super 16/32/4

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

ss10/20 v8 super 16/32/4

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/41 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

-xtarget -xarch -xchip -xcache

The Pascal Compiler 65

3

ss10/51 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/402 v8 super 16/32/4

ss10/412 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

ss10/514 v8 super 16/32/4:1024/32/1

ss10/612 v8 super 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss20/51 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/91 v8 super2 16/32/4:1024/32/1

ss20/502 v8 super 16/32/4

ss10/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/712 v8 super 16/32/4:1024/32/1

ss20/912 v8 super 16/32/4:1024/32/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

ss600/61 v8 super 16/32/4:1024/32/1

ss600/120 v7 old 64/32/1

-xtarget -xarch -xchip -xcache

66 Pascal 4.0 User’s Guide

3

–Z

The –Z option instructs pc to insert code that initializes all local variables to
zero. Standard Pascal does not allow initialization of variables.

-ztext

(Solaris 2.x only) The -ztext option forces a fatal error if relocations remain
against non-writable, allocatable sections.

ss600/140 v7 old 64/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/ v8 super 16/32/4:1024/32/1

ss600/ v8 super 16/32/4:1024/32/1

ss600/ v8 super 16/32/4:1024/32/1

ss1000 v8 super 16/32/4:1024/32/1

sc2000 v8 super 16/32/4:1024/64/1

cs6400 v8 super 16/32/4:2048/64/1

solb5 v7 old 128/32/1

solb6 v8 super 16/32/4:1024/32/1

ultra v8 ultra 16/32/1:512/64/1

ultra1/140 v8 ultra 16/32/1:512/64/1

ultra1/170 v8 ultra 16/32/1:512/64/1

ultra1/1170 v8 ultra 16/32/1:512/64/1

ultra1/2170 v8 ultra 16/32/1:512/64/1

ultra1/2200 v8 ultra 16/32/1:1024/64/1

-xtarget -xarch -xchip -xcache

67

Program Construction and
Management 4

This chapter is an introduction to the methods generally used to construct and
manage programs using Pascal. It describes units and libraries in two separate
sections:

Units
For many reasons, it is often inconvenient to store a program in a single file, as
in the case of a very large program.

You can break up a program in several ways. Perhaps the simplest way is to
use an include file. An include file is a separate file that is copied in by the
compiler when it encounters an include compiler directive. For example, in
the following program:

the line #include "includefile" is a compiler directive to cpp (1), the
Pascal compiler’s preprocessor. The directive instructs cpp (1) to find the file
includefile and copy it into the stream before continuing.

Units page 67

Libraries page 74

program include (output);
#include "includefile"

68 Pascal 4.0 User’s Guide

4

The actual includefile looks like this:

In this example, the include file contains the entire program. In reality, an
include file probably contains a set of variable or procedure declarations.
include files are often used when a set of declarations needs to be shared
among a number of programs.

However, suppose your program is very large and takes a long time to
compile. Using include files may make editing more convenient, but when
you make a change in one part of your program, you still must recompile the
entire program. As another example, suppose you want to be able to share
compiled code with other people, but for reasons of security or convenience,
do not want to share the source code.

Both of these problems are solved by separately compiled units, generally
called units. A unit is a part of a program stored in its own file and linked
with the rest of the program after compilation.

Using Program Units and Module Units

There are two kinds of units:

• Program unit—This unit looks like any program. It begins with a program
header and contains the main program.

Here is an example:

begin
writeln ('Hello, world.')

end.

program program_unit (output);
procedure say_hello; extern;
begin

say_hello
end.

Program Construction and Management 69

4

The body of the procedure say_hello is not defined in this program unit,
but the program unit does contain a declaration of the interface to the
procedure. The keyword extern declares that say_hello is declared in a
module unit.1

• Module unit—This unit can begin with an optional module header,
followed by a set of compilable declarations and definitions. Modules that
call externally defined routines must have declarations for those routines.

Here is an example:

Every program must have one and only one program unit; a program can have
any number of module units. Any unit can call procedures declared in any
other unit; each unit must have external declarations for every procedure it
uses that is not defined in that unit.

A module unit can also be used as a library, that is, as a collection of useful
routines that is shared among a number of programs.

Compiling with Units

Consider the units given in the previous section, “Using Program Units and
Module Units.” You can compile and link these units on a single line by
executing the following command, which then produces the executable,
a.out .

hostname% pc program_unit.p module_unit.p

1. A statement that shows the interface of a routine is called a declaration, because it declares the name and
parameters of the routine. The set of statements that shows the entire routine, including the body, is called
the definition of the routine. There can be only one definition for a given routine, but every routine must be
declared in every module or program unit that uses it.

module module_unit;
procedure say_hello;
begin

writeln ('Hello, world.')
end;

70 Pascal 4.0 User’s Guide

4

You can also separate the compilation and linking or loading steps, as follows:

hostname% pc program_unit.p -c
hostname% pc module_unit.p -c
hostname% pc program_unit.o module_unit.o

In this case, you call pc on each unit with the “compile only” option (-c),
which produces an object file with the extension .o . When you use this
option, the compiler driver does not call the linker, ld . You then call pc a
second time, giving the names of the object files, and pc calls pc3 to check for
name and type conflicts before calling the linker.

Calling the linker or loader ld (1) directly does not have the same effect as
calling pc ; when you call ld (1) directly, the files are linked and loaded, but
they are not checked for conflicts.

Using Units and Header Files

A complex program may have many routines defined in modules. Each
routine must have a declaration (for example, procedure proc; extern;) in
each file that calls the routine. The easiest way to be sure that you have a
correct and consistent set of declarations is to create a header file.

A header file is a file that contains a set of declarations, nothing else. You use
a header file by using an include directive to include the header file in the
compilation.

For example, here is a modified version of the program, program_unit , that
uses a header file:

In this case, the content of header.h is very simple:

program program_unit2 (output);
include "header.h"
begin

say_hello
end.

procedure say_hello; extern;

Program Construction and Management 71

4

In a real program, header.h would probably contain many declarations and
would be included in several modules. Aside from routine declarations,
header files often contain constant, type, and variable declarations.

Sharing Variables Between Units

Variables that are global across a unit (that is, not declared locally in a routine)
can be public or private . A public variable can be shared by any unit that
is linked to the unit that declares the variable. A private variable cannot be
shared.

You can use the public and private reserved words to declare that a var
section declares public or private variables. For example:

When you do not use public or private , variables are public by default.
However, when you compile with the -xl option, variables are private by
default.

To share a public variable, simply declare it in each unit where you want to
share it. As long as the variable is public , each reference to that variable
accesses the same data.

program program_unit3 (output);
public var

x : integer;
private var

y : integer;

72 Pascal 4.0 User’s Guide

4

Here is a program unit that declares a variable:

Here is a module unit that declares a variable with the same name:

program program_unit3 (output);
var

x : integer;

procedure say_hello; external;

begin
for x := 1 to 5 do say_hello

end.

module module_unit3;
var

x : integer;

procedure say_hello;

begin
writeln ('Hello, world for the', x, ' time.')

end;

Program Construction and Management 73

4

By default, both definitions of variable x are public . Thus, when you compile
and link the program and module units, references to x refer to the same
variable, as follows:

If you compile the program giving the -xl option, the variables are private
by default, as follows:

You can get the same effect by explicitly declaring the variable in a private
var section. Similarly, when you use -xl , you can create public variables by
declaring them in a public var section.

As with routine declarations, it is often a good idea to declare public
variables in an include file. Doing so makes it easier to keep your
declarations consistent.

There are other methods for making variables visible to different units. See
Chapter 5, “Separate Compilation,” for more information.

hostname% pc program_unit3.p module_unit3.p
program_unit.p:
module_unit.p:
Linking:
hostname% a.out
Hello, world for the 1 time.
Hello, world for the 2 time.
Hello, world for the 3 time.
Hello, world for the 4 time.
Hello, world for the 5 time.

hostname% pc -xl program_unit.p module_unit.p
program_unit.p:
module_unit.p:
Linking:
hostname% a.out
Hello, world for the 0 time.
Hello, world for the 0 time.
Hello, world for the 0 time.
Hello, world for the 0 time.
Hello, world for the 0 time.

74 Pascal 4.0 User’s Guide

4

Libraries
You can use a module unit as a library of useful functions. The simplest way
to do so is to create a source file containing the definitions of your library
routines and then compile it using the -c option. You can then link the
resulting .o file to any number of files. For convenience, you probably should
create a header file containing the routine declarations for the library.

A simple library as described above has two problems:

• When a library grows in size, it may become inconvenient to store its source
in a single file, both for ease of editing and so you can avoid recompiling a
large file when you change only part of it.

On the other hand, it would be inconvenient to have to name many library
modules on the command-line when you link your program. Thus, it would
be helpful to be able to combine a number of library modules.

• Several programs that you run at the same time may share the same library.
Under the scheme described above, each program has its own copy of the
library. It saves space and even I/O time if several programs share library
code.

Both problems have solutions. First, you can combine or archive modules
together. Secondly, you can create a shared library.

See the Solaris documentation on the linker and libraries for information on
creating archived and shared libraries.

75

Separate Compilation 5

This chapter describes how to compile Pascal programs in separate units.
Chapter 4, “Program Construction and Management,” gives an introduction to
the concepts in this chapter. Following are the sections:

In separate compilation, a program is divided into several units that can be
separately compiled into object (.o) files. The object files are then linked using
pc , which invokes pc3 to check for the consistent use of global names and
declarations across the different units, and then invokes ld (1) to link and load
the units. You can also give pc the names of all the units at once, in which case
pc compiles all the units, checks for consistency, and links the units in one
step.

Separate compilation is different from independent compilation. In
independent compilation, you invoke ld directly, so there is no consistency
checking. Independent compilation is not addressed in this guide.

Working with Units
Pascal provides two types of source files or units: the program unit and the
module unit.

Working with Units page 75

Sharing Variables and Routines Across Multiple Units page 76

Sharing Declarations in Multiple Units page 87

76 Pascal 4.0 User’s Guide

5

Using Program Units

The program unit is the source program with the program header. It has the
following syntax:
<program unit> ::= < program heading> < declaration list> < program body>

Each program you write can have only one program unit. The program body
is the first code that Pascal executes.

Using Module Units

A module unit is a source program that does not have a program header. It
has the following syntax:

<module unit> ::= [< module heading>] < declaration list>

The module heading contains the reserved word module followed by an
identifier:

<module heading> ::= ['module' < identifier> ';']

For example:

This is a legal module heading. The module heading is optional.

Sharing Variables and Routines Across Multiple Units
Pascal supports three methods of sharing variables and routines between units:

• include files
• Multiple variable declarations
• extern/define variable declarations

These methods are not mutually exclusive; for example, you can declare a
variable as either extern or define in an include file.

The following sections describe these methods.

module sum;

Separate Compilation 77

5

Compiling without the -xl Option

There are three ways of sharing variables and routines across units when you
compile your program without the –xl option.

Sharing Public Variables

If you declare a variable in two or more separate units and the variable is
public in both places, that variable is shared between units. Variables are
public by default, unless you compile with the -xl option, in which case
variables are private by default. In this example, the variable global is
public by default, and thus shared between the program and the module.

The program unit,
shrvar_prog.p

program shrvar_prog;

var
 global: integer;

procedure proc; external;

begin { program body }
 global := 1;
 writeln('From MAIN, before PROC: ', global);
 proc;
 writeln('From MAIN, after PROC: ', global)
end. { shrvar_prog }

The module unit, shrvar_mod.p .
The assignment of a new value to
global and max_array in the
procedure proc in
shrvar_prog.p is repeated in
shrvar_mod.p .

module shrvar_mod;

var
 global: integer;

procedure proc;

begin
writeln('From PROC: ',global);
global := global + 1

end; { proc }

78 Pascal 4.0 User’s Guide

5

Using extern Option to Share Routines

If a program or module calls a procedure not defined in that unit, you must
declare it with either the extern or external routine option. For instance, in
the previous example, the procedure proc is defined in shrvar_mod.p , but
used in shrvar_prog.p . Thus, it is declared as external in
shrvar_prog.p . Also, proc must also be defined as public in
shrvar_mod.p , which is the default.

Using include Files to Share Variables and Routines

The include file contains the declarations for the program. Placing all
program declarations in a single file makes your program more consistent and
easier to maintain.

To use this feature, place the number sign character (#) in the first position of a
line immediately followed by the word include , and then a file name
enclosed in angle brackets (< and >) or double quotation marks ("). The
different enclosures (<> and "") affect the search order for files. The syntax for
the #include directive is determined by cpp (1).

When the compiler encounters the #include in the input, it inserts the lines
from the included file into the input stream.

The commands to compile and
execute shrvar_prog.p and
shrvar_mod.p

hostname% pc shrvar_prog.p shrvar_mod.p
shrvar_prog.p:
shrvar_mod.p:
Linking:
hostname% a.out
From MAIN, before PROC: 1
From PROC : 1
From MAIN, after PROC : 2

Separate Compilation 79

5

The program unit, inc_prog.p ,
which includes the file
include.h

program inc_prog;

#include "include.h"

begin { program body}
 global := 1;
 writeln('From MAIN, before PROC: ', global);
 proc;
 writeln('From MAIN, after PROC: ', global)
end. { inc_prog }

The module unit, inc_mod.p ,
which also includes the file
include.h

module inc_mod;

#include "include.h"

procedure proc;

begin
 writeln('From PROC : ', global);
 global := global + 1
end; { proc }

The include file, include.h var
 global : integer;

procedure proc; extern;

The commands to compile and
execute inc_prog.p and
inc_mod.p

hostname% pc inc_prog.p inc_mod.p
inc_prog.p:
inc_mod.p:
Linking:
hostname% a.out
From MAIN, before PROC: 1
From PROC : 1
From MAIN, after PROC: 2

80 Pascal 4.0 User’s Guide

5

Using the -xl Option

When you use the –xl option, variables and top-level procedures and
functions declared in the program unit default to private . Look at the
difference when you compile and execute shrvar_prog.p and
shrvar_mod.p with –xl . See the source code in “Sharing Public Variables”
on page 77.

Without –xl , the variable global in shrvar_mod.p is treated as public ;
here, global is treated as private . Thus, the assignment:

global := global + 1;

is not reflected in shrvar_prog.p ; instead, each file uses its own private copy
of global .

The following sections describe five ways of sharing variables and routines
across units when you compile your program with –xl .

Using public var Declarations

The following examples uses the public attribute in the var declaration to
make global public when you compile your program with –xl .

The commands to compile and
execute shrvar_prog.p and
shrvar_mod.p with the –xl
option

hostname% pc -xl shrvar_prog.p shrvar_mod.p
shrvar_prog.p:
shrvar_mod.p:
Linking:
hostname% a.out
From MAIN, before PROC: 1
From PROC : 0
From MAIN, after PROC: 1

Separate Compilation 81

5

The program unit,
pubvar_prog.p , which declares
global as public

program pubvar_prog;

public var
 global: integer;

procedure proc;
 external;

begin
 global := 1;
 writeln('From MAIN, before PROC: ', global);
 proc;
 writeln('From MAIN, after PROC: ', global)
end. { pubvar_prog }

The module unit, pubvar_mod.p ,
which also declares global as
public

module pubvar_mod;

public var
 global : integer;

procedure proc;

begin
 writeln('From PROC :',global);
 global := global + 1;
end; { proc }

The commands to compile and
execute pubvar_prog.p and
pubvar_mod.p

hostname% pc -xl pubvar_prog.p pubvar_mod.p
pubvar_prog.p:
pubvar_mod.p:
Linking:
hostname% a.out
From MAIN, before PROC: 1
From PROC : 1
From MAIN, after PROC: 2

82 Pascal 4.0 User’s Guide

5

Using the define Variable Attribute

This example makes global public using the define attribute of the variable
declaration.

The program unit,
defvar_prog.p

program defvar_prog;

var
 global: extern integer;

procedure proc;
 external;

begin
 global := 1;
 writeln('From MAIN, before PROC: ', global);
 proc;
 writeln('From MAIN, after PROC: ', global);
end. { defvar_prog }

The module unit, defvar_mod.p ,
which makes global public using
the define attribute

module defvar_mod;

var
 global : define integer;

procedure proc;

begin
 writeln('From PROC : ',global);
 global := global + 1;
end; { proc }

Separate Compilation 83

5

Using the define Declaration

This example defines global in the module defvar_mod2 using the define
declaration. The advantage of using the define declaration over the define
variable attribute is that the define declaration can be easily converted to use
include files.

The commands to compile and
execute defvar_prog.p and
defvar_mod.p

hostname% pc -xl defvar_prog.p defvar_mod.p
defvar_prog.p:
defvar_mod.p:
Linking:
hostname% a.out
From MAIN, before PROC: 1
From PROC : 1
From MAIN, after PROC : 2

The program unit,
defvar_prog.p

program defvar_prog;

var
 global: extern integer;

procedure proc;
 external;

begin
 global := 1;
 writeln('From MAIN, before PROC: ', global);
 proc;
 writeln('From MAIN, after PROC: ', global)
end. { defvar_prog }

84 Pascal 4.0 User’s Guide

5

Using include Files

In the following example, the extern declaration for the variable global is in
the include file, inc_prog2.p , and is therefore included in both files. The
define declaration in file inc_mod2.p cancels the extern definition.

The module unit,
defvar_mod2.p , which defines
global in a define declaration

module defvar_mod2;

var
 global : extern integer;

define
 global;

procedure proc;

begin
 writeln('From PROC : ',global);
 global := global + 1;
end; { proc }

The commands to compile and
execute defvar_prog.p and
defvar_mod2.p

hostname% pc -xl defvar_prog.p defvar_mod2.p
defvar_prog.p:
defvar_mod2.p:
Linking:
hostname% a.out
From MAIN, before PROC: 1
From PROC : 1
From MAIN, after PROC : 2

Separate Compilation 85

5

The program unit, inc_prog2.p program inc_prog2;

%include "include2.h";

procedure proc; extern;

begin
 global := 1;
 writeln('From MAIN, before PROC: ',global);
 proc;
 writeln('From MAIN, after PROC: ',global);
end. { proc }

The module unit, inc_mod2.p module inc_mod2;

define
 global;

%include "include2.h";

procedure proc;

begin
 writeln('From PROC : ',global);
 global := global + 1;
end; { proc }

The include file, include2.h var
 global : extern integer;

86 Pascal 4.0 User’s Guide

5

Using extern

In the previous example, the extern definition for variables is put into an
include file and then shared. You can do the same for the extern procedure
definition. In doing so, you must also declare the variable with a define
declaration in the module that defines the procedure. This declaration nullifies
the effect of the extern declaration.

The commands to compile and
execute inc_prog2.p and
inc_mod2.p

hostname% pc -xl inc_prog2.p inc_mod2.p
inc_prog2.p:
inc_mod2.p:
Linking:
hostname% a.out
From MAIN, before PROC: 1
From PROC : 1
From MAIN, after PROC : 2

The program unit, ext_prog.p program ext_prog;

%include "extern.h";

begin
 global := 1;
 writeln('From MAIN, before PROC: ',global);
 proc;
 writeln('From MAIN, after PROC: ',global);
end. { ext_prog }

Separate Compilation 87

5

Sharing Declarations in Multiple Units
Using extern and external directives for procedure and function
declarations, you can optionally specify the source language of a separately
compiled procedure or function. For example, extern fortran directs the
compiler to generate calling sequences compatible with the FORTRAN
compiler from SunSoft. Then, external c directs the compiler to generate
calling sequences compatible with SunSoft C compiler.

The module unit, ext_mod.p module ext_mod;

define
 global, proc;

%include "extern.h";

procedure proc;

begin
 writeln('From PROC : ',global);
 global := global + 1;
end; { proc }

The include file, extern.h var
 global : extern integer;

procedure proc; extern;

The commands to compile and
execute ext_prog.p and
ext_mod.p

hostname% pc -xl ext_prog.p ext_mod.p
ext_prog.p:
ext_mod.p:
Linking:
hostname% a.out
From MAIN, before PROC: 1
From PROC : 1
From MAIN, after PROC: 2

88 Pascal 4.0 User’s Guide

5

For routines declared extern fortran or external fortran , the changes
in the calling sequence are as follows:

• For value parameters, the compiler creates a copy of the actual argument
value in the caller’s environment and passes a pointer to the temporary
variable on the stack. Thus, you need not create (otherwise useless)
temporary variables.

• The compiler appends an underscore to the name of the external procedure
to conform to a naming convention of the f77 (1) compiler. Pascal
procedure names called from FORTRAN must supply their own trailing
underscore (_).

• Multidimensional Pascal arrays are not compatible with FORTRAN arrays.
Because FORTRAN uses column-major ordering, a multidimensional
Pascal array passed to FORTRAN appears transposed.

For routines declared extern c or external c , a warning is generated if you
attempt to pass a nested function.

When you compile your program with the –xl option, you can also use
nonpascal to declare non-Pascal routines when porting DOMAIN programs
written in DOMAIN Pascal, FORTRAN, and C.

89

The C–Pascal Interface 6

This chapter describes how to mix C and Pascal modules in the same program.
It contains the following sections:

The examples in this chapter assume that you are using the ANSI C compiler.
To invoke ANSI C:

• On the Solaris 1.x environment, use the acc command
• On the Solaris 2.x environment, use the cc command

Compilation of Mixed-Language Programs
You must use the compiler option –lpc when you compile a C main routine
that calls Pascal. –lpc includes the Pascal object library libpc . For example:

hostname% pc -c -calign my_pascal.p
hostname% cc my_pascal.o my_c.c -lpc

Compilation of Mixed-Language Programs page 89

Compatibility of Types for C and Pascal page 90

General Parameter Passing in C and Pascal page 93

Procedure Calls: C–Pascal page 93

Procedure Calls: Pascal–C page 117

Procedures and Functions as Parameters page 132

Global Variables in C and Pascal page 133

File-Passing Between Pascal and C page 134

90 Pascal 4.0 User’s Guide

6

The -c option produces an unlinked object file. The -calign option causes
pc to use C-like data formats for aggregate objects.

When you compile a Pascal main routine that calls C, you don’t have to use
any special options, but the -calign option is again useful. The C object
library, libc , is automatically brought in for every Pascal compilation.

For example:

hostname% cc -c my_c.c
hostname% pc -calign my_c.o my_pascal.p

Compatibility of Types for C and Pascal
Table 6-1 and Table 6-2 list the default sizes and alignments of compatible
types for C and Pascal.

Table 6-1 C and Pascal Size and Alignment of Compatible Types

 Pascal Type C Type Size (bytes) Alignment (bytes)

double double 8 8

longreal double 8 8

real double 8 8

single float 4 4

shortreal float 4 4

integer16 short int 2 2

integer32 int 4 4

integer int 4 4

-128..127 char 1 1

boolean char 1 1

alfa char a [10] 10 1

char char 1 1

string char a [80] 80 1

varying[n] of char struct {int , char [n]} - 4

record struct/union - Same as element type

The C–Pascal Interface 91

6

Precautions with Compatible Types

This section describes the precautions you should take when working with
compatible types.

The shortreal Type

The Pascal shortreal and C float compatibility works if you pass by
reference. See “Value Parameters” on page 112 for examples that show you
how to pass by value.

Character Strings

C has several assumptions about strings. All C strings are:

• Passed by reference since C strings are arrays
• Terminated by a null byte
• Located in static variable storage

You can satisfy these assumptions as follows:

• Pass by reference by making the strings var , in , out , or in out
parameters.

• Provide the null byte explicitly before passing a string to C. Pascal
guarantees the null byte only if the string is a constant. The null byte is not
required by the ISO Pascal Standard.

array array - Same as element type

variant record struct/union - -

fields in packed
record

bit field - -

Table 6-2 C and Pascal Size and Alignment of Compatible Types with –xl

 Pascal Type C Type Size (bytes) Alignment (bytes)

real float 4 4

integer short int 2 2

Table 6-1 C and Pascal Size and Alignment of Compatible Types (Continued)

 Pascal Type C Type Size (bytes) Alignment (bytes)

92 Pascal 4.0 User’s Guide

6

Array Indexes

Pascal array indexes can start at any integer; C array indexes always start at
zero.

Aggregate Types

Aggregate types include arrays, varying arrays, sets, strings, alphas, records,
and variant records.

Pascal aggregate types may require alignment and layout adjustment to match
C unions, structures, and arrays. Pascal aggregate types can be any of the
following: arrays, varying arrays, sets, strings, alphas, records, or variant
records.

However, you can use the -calign option to eliminate some of these
differences. With -calign , the following assumptions are made:

• Pascal records have the same data layout as C structures.

• Arrays have the same data layout in both languages. However, if you use
the -xl option in addition to -calign , boolean arrays with an odd
number of elements are different.

• Pascal variants are the same as C unions.

Incompatibilities

This section describes the incompatibilities between C and Pascal types.

Enumerated Types

C enumerated types are incompatible with Pascal enumerated types. Pascal
enumerated types are represented internally by sequences of integral values
starting with 0. Storage is allocated for a variable of an enumerated type as if
the type was a subrange of integer. For example, an enumerated type of fewer
than 128 elements is treated as 0..127, which, according to the rules above, is
equivalent to a char in C.

C enumerated types are allocated a full word and can take on arbitrary integer
values.

The C–Pascal Interface 93

6

Pascal Set Types

In Pascal, a set type is implemented as a bit vector, which is similar to a C
short-word array, where each short-word contains two bytes. Thus, sets are
bit-vectors, and they are allocated in multiples of 16 bits. To find out the size
of a set, enter the following code:

Direct access to individual elements of a set is highly machine-dependent and
should be avoided.

General Parameter Passing in C and Pascal
A few general rules apply to parameter passing:

• C passes all arrays by reference since C strings are arrays.

• C passes all structures by value.

• In C, if you want to pass anything else by reference, then you must
explicitly prepend the reference ampersand (&), or pass an explicit pointer.

• Pascal passes all parameters by value unless you explicitly state that they
are var , in out , or out parameters, in which case they are passed by
reference.

Procedure Calls: C–Pascal
Here are examples of how a C main program calls a Pascal procedure:

ceiling(ord(highest_element) / 16)

The Pascal procedure, Samp, in
the file Samp.p . Note the
procedure definition.

procedure Samp(var i: integer; var r: real);
begin
 i := 9;
 r := 9.9
end; { Samp }

94 Pascal 4.0 User’s Guide

6

Variable Parameters

Pascal passes all variable parameters by reference, which C can do, too.

The C main program,
SampMain.c . Note the
procedure definition and call.

#include <stdio.h>

extern void Samp(int *, double *);

int main (void)
{
 int i ;
 double d ;

 Samp(&i, &d) ;
 printf ("%d %3.1f \n", i, d) ;
}

The commands to compile and
execute Samp.p and
SampMain.c

hostname% pc -c Samp.p
hostname% cc Samp.o SampMain.c
hostname% a.out
 9 9.9

The C–Pascal Interface 95

6

Simple Types without –xl

Without -xl , simple types match, as in the following example:

The Pascal procedure,
SimVar.p

procedure SimVar(
 var t, f: boolean;
 var c: char;
 var si: integer16;
 var i: integer;
 var sr: shortreal;
 var r: real);
begin
 t := true;
 f := false;
 c := 'z';
 si := 9;
 i := 9;
 sr := 9.9;
 r := 9.9;
end; { SimVar }

The C main program,
SimVarMain.c

#include <stdio.h>

extern void SimVar(char *, char *, char *, short *,
 int *, float *, double *);

int main(void)
{
 char t, f, c;
 short si;
 int i;
 float sr;
 double r;

 SimVar(&t, &f, &c, &si, &i, &sr, &r);
 printf(" %08o %08o %c %d %d %3.1f %3.1f \n",

t, f, c, si, i, sr, r);
}

96 Pascal 4.0 User’s Guide

6

Simple Types with –xl

With the -xl option, the Pascal real must be paired with a C float , and the
Pascal integer must be paired with a C short int .

Strings of Characters

The C counterpart to the Pascal alfa and string types are arrays; C passes
all arrays by reference. The C counterpart to the Pascal varying is a structure;
C passes structures by value.

Before you call Pascal with a null varying string, set the byte count to zero
because that is what Pascal assumes about such strings.

C can pass a structure consisting of a four-byte integer and an array of
characters to a Pascal procedure, expecting a var parameter that is a variable-
length string.

See the following example:

The commands to compile and
execute SimVar.p and
SimVarMain.c

hostname% pc -c SimVar.p
hostname% cc SimVar.o SimVarMain.c
hostname% a.out
 00000001 00000000 z 9 9 9.9 9.9

The Pascal procedure,
StrVar.p

type
 TVarStr = varying [25] of char;

procedure StrVar(
 var a: alfa;
 var s: string;
 var v: TVarStr);
begin
 a := 'abcdefghi' + chr(0);
 s := 'abcdefghijklmnopqrstuvwxyz' + chr(0);
 v := 'varstr' + chr(0);
end; { StrVar }

The C–Pascal Interface 97

6

Fixed Arrays

For a fixed array parameter, pass the same type and size by reference, as
shown in the following example:

The C main program,
StrVarMain.c

#include <stdio.h>
#include <string.h>

struct TVarLenStr {
 int nbytes;
 char a[25];
};

extern void StrVar(char *, char *, struct TVarLenStr *);

int main(void)
{
 struct TVarLenStr vls;
 char s10[10], s80[80], s25[25];

 vls.nbytes = 0;
 StrVar(s10, s80, &vls);
 strncpy(s25, vls.a, vls.nbytes);
 printf(" s10 = '%s' \n s80 = '%s' \n s25 = '%s' \n",

s10, s80, s25);
 printf(" strlen(s25) = %d \n", strlen(s25));
}

The commands to compile and
execute StrVar.p and
StrVarMain.c

hostname% pc -c StrVar.p
hostname% cc StrVar.o StrVarMain.c -lpc
hostname% a.out
 s10='abcdefghi'
 s80='abcdefghijklmnopqrtstuvwxyz'
 s25='varstr'
 strlen(s25)=6

98 Pascal 4.0 User’s Guide

6

Although it does not apply in this example, arrays of aggregates in Pascal
have, by default, a size that is always a multiple of four bytes. When you use
the -calign option to compile the Pascal code, that difference with C is
eliminated.

The following example illustrates this point. The string 'Sunday' only gets
through to the C main program when you compile the Pascal routine using
-calign .

The Pascal procedure,
FixVec.p

type
 VecTyp = array [0..8] of integer;

procedure FixVec(var V: TVec; var Sum: integer);
var
 i: integer;
begin
 Sum := 0;
 for i := 0 to 8 do
 Sum := Sum + V[i]
end; { FixVec }

The C main program,
FixVecMain.c

#include <stdio.h>

extern void FixVec(int [], int *);

int main(void)
{
 int Sum;
 static int a[] = {0,1,2,3,4,5,6,7,8};

 FixVec(a, &Sum);
 printf(" %d \n", Sum);
}

The commands to compile and
execute FixVec.p and
FixVecMain.c

hostname% pc -c -calign FixVec.p
hostname% cc FixVec.o FixVecMain.c -lpc
hostname% a.out
 36

The C–Pascal Interface 99

6

The Pascal procedure,
DaysOfWeek.p

type
TDay= array [0..8] of char;
TWeek = array [0..6] of day;
TYear = array [0..51] of week;

procedure DaysOfWeek(var Y: TYear);
begin

v[1][1] := 'Sunday';
end;

The C main program,
DaysOfWeekMain.c

#include <stdio.h>

extern void DaysOfWeek(char [][7][9]);

int main(void)
{
 char Year[52][7][9];

 DaysOfWeek(Year);
 printf(" Day = '%s' \n", Year[1][1]);
}

The commands to compile and
execute DaysOfWeek.p and
DaysOfWeekMain.c without
-calign

hostname% pc -c DaysOfWeek.p
hostname% cc DaysOfWeek.o DaysOfWeekMain.c -lpc
hostname% a.out
 Day = ''

The commands to compile and
execute DaysOfWeek.p and
DaysOfWeekMain.c with
-calign

hostname% pc -c -calign DaysOfWeek.p
hostname% cc DaysOfWeek.o DaysOfWeekMain.c -lpc
hostname% a.out
day = 'Sunday '

100 Pascal 4.0 User’s Guide

6

The univ Arrays

You can pass any size array to a Pascal procedure expecting a univ array,
although there is no special gain in doing so, because there is no type or size
checking for separate compilations. However, if you want to use an existing
Pascal procedure that has a univ array, you can do so. All univ arrays that
are in , out , in out , or var parameters pass by reference.

The Pascal procedure,
UniVec.p , which defines a 10-
element array

type
 TVec = array [0..9] of integer;

procedure UniVec(
 var V: univ TVec;
 in Last: integer;
 var Sum: integer);
var
 i: integer;
begin
 Sum := 0;
 for i := 0 to Last do

Sum := Sum + V[i];
end; { UniVec }

The C main program,
UniVecMain.c , which passes
a 3-element array to the Pascal
procedure written to do a 10-
element array

#include <stdio.h>

extern void UniVec(int *, int, int *);

int main(void)
{
 int Sum;
 static int a[] = {7, 8, 9};

 UniVec(a, 2, &Sum);
 printf(" %d \n", Sum);
}

The C–Pascal Interface 101

6

Conformant Arrays

For single-dimension conformant arrays, pass upper and lower bounds, placed
after the declared parameter list. If the array is multidimensional, pass
element widths as well, one element width for each dimension, except the last
one.

See this example:

One bounds pair may apply to several arrays if they are declared in the same
parameter group:

With multidimensional arrays, for all dimensions but the last one, pass the low
bound, high bound, and element width.

The commands to compile and
execute UniVec.p and
UniVecMain.c with -calign

hostname% pc -c -calign UniVec.p
hostname% cc UniVec.o UniVecMain.c -lpc
hostname% a.out
 24

function ip(var x: array [lb..ub: integer] of real): real;

extern double ip(double [], int, int);
 ...

 double v1[10];
 double z;
 z = ip(v1, 0, 9);

 ...

function ip(var x,y:array[lb..ub:integer] of real):real;
 ...
 double v1[10], v2[10] ;
 extern double ip() ;
 double z ;
 z = ip (v1, v2, 0, 9) ;

 ...

102 Pascal 4.0 User’s Guide

6

Examples of single-dimension, multidimension, and array-of-character
conformant arrays follow. Conformant arrays are included here only because
they are a relatively standard feature; there are usually more efficient and
simpler ways to do the same thing.

Example 1: Single-Dimension Array

The Pascal procedure,
IntCA.p . Pascal passes the
bounds pair.

procedure IntCA(var a: array [lb..ub: integer] of integer);
begin
 a[1] := 1;
 a[2] := 2
end; { IntCA }

The C main program,
IntCAMain.c

#include <stdio.h>

extern void IntCA(int [], int, int);

int main(void)
{
 int k ;
 static int s[] = { 0, 0, 0 };

 IntCA (s, 0, sizeof(s)-1);
 for (k=0 ; k < 3 ; k++)
 printf(" %d \n", s[k]);
}

The commands to compile and
execute IntCA.p and
IntCAMain.c with -calign

hostname% pc -c -calign IntCA.p
hostname% cc IntCA.o IntCAMain.c -lpc
hostname% a.out

 0
 1
 2

The C–Pascal Interface 103

6

Example 2: Multi-Dimension Array

The Pascal procedure,
RealCA.p . Pascal passes low
bound, high bound, and element
width.

procedure RealCA(var A: array [r1..r2: integer] of
 array [c1..c2: integer] of real);
var
 col, row: integer;
begin
 for row := r1 to r2 do
 for col := c1 to c2 do
 if row = col then
 A[row, col] := 1.0
 else
 A[row, col] := 0.0
end; { RealCA }

The C main program,
RealCAMain.c . Array M has 2
rows of 3 columns each. c1 and
c2 are the first and last columns.
r1 and r2 are the first and last
rows. wc is the width of a column
element (smallest) and is equal to
sizeof(M[0][0]) . wr is the
width of a row element (next
largest) and is equal to
(c2-c1+1) * wc .

#include <stdio.h>

#define NC 3
#define NR 2

extern void RealCA(double [][NC], int, int, int, int, int);

int main(void)
{
 double M[NR][NC];
 int col, c1, c2, row, r1, r2, wc, wr;

 c1 = 0;
 r1 = 0;
 c2 = NC - 1;
 r2 = NR - 1;
 wc = sizeof(M[0][0]);
 wr = (c2 - c1 + 1) * wc;

 RealCA(M, r1, r2, wr, c1, c2);
 for (row = r1; row <= r2; row++) {

 printf("\n");
 for (col = c1; col <= c2; col++)

 printf("%4.1f", M[row][col]);
 };
 printf("\n");
}

104 Pascal 4.0 User’s Guide

6

If wc is the width of the smallest element, as determined by sizeof() , then
the width of the next largest element is the number of those smaller elements
in the next larger element multiplied by wc.

width of next largest element = (ub - lb + 1) * wc

In general, (lb , ub , wc) are the bounds and element width of the next lower
dimension of the array. This definition is recursive.

Example 3: Array of Characters

The commands to compile and
execute RealCA.p and
RealCAMain.c with -calign

hostname% pc -c -calign RealCA.p
hostname% cc RealCA.o RealCAMain.c -lpc
hostname% a.out

1.0 0.0 0.0
0.0 1.0 0.0

The Pascal procedure,
ChrCAVar.p

procedure ChrCAVar(var a: array [lb..ub: integer] of char);

begin
 a[0] := 'T';
 a[13] := 'o';
end; { ChrCAVar }

The C main program,
ChrCAVarMain.c . For C, the
lower bound is always 0.

#include <stdio.h>

extern void ChrCAVar(char [], int, int);

int main(void)
{
 static char s[] = "this is a string" ;

 ChrCAVar(s, 0, sizeof(s)-1) ; /*(s, lower, upper)*/
 printf("%11s \n", s) ;
}

The C–Pascal Interface 105

6

Records and Structures

In most cases, a Pascal record describes the same objects as its C structure
equivalent, provided that the components have compatible types and are
declared in the same order. The compatibility of the types depends mostly on
size and alignment. For more information on size and alignments of simple
components, see “Compatibility of Types for C and Pascal” on page 90.

By default, the alignment of a record is always four bytes and the size of a
record is always a multiple of four bytes. However, when you use -calign in
compiling the Pascal code, the size and alignment of the Pascal record matches
the size and alignment of the equivalent C structure.

A Pascal record of an integer and a character string matches a C structure of
the same constructs, as follows:

The commands to compile and
execute ChrCAVar.p and
ChrCAVarMain.c

hostname% pc -c -calign ChrCAVar.p
hostname% cc ChrCAVar.o ChrCAVarMain.c -lpc
hostname% a.out
This is a string

The Pascal procedure,
StruChr.p . It is safer for the
Pascal procedure to explicitly
provide the null byte and include
it in the count before the string is
passed to C.

type
 TLenStr = record
 nbytes: integer;
 chrstr: array [0..24] of char
 end;

procedure StruChr(var v: TLenStr);
begin
 v.NBytes := 14;
 v.ChrStr := 'St. Petersburg' + chr(0);
end; { StruChr }

106 Pascal 4.0 User’s Guide

6

The record in the example above has, by default, the same size and alignment
as the equivalent C record. Some records, though, are laid out differently
unless you use the -calign option.

The C main program,
StruChrMain.c

#include <stdio.h>
#include <string.h>

struct TVarLenStr {
 int NBytes;
 char a[25];
};

extern void StruChr(struct TVarLenStr *);

int main(void)
{
 struct TVarLenStr vls;
 char s25[25];

 vls.NBytes = 0;
 StruChr(&vls);
 strncpy(s25, vls.a, vls.NBytes);
 printf(" s25 = '%s' \n", s25);
 printf(" strlen(s25) = %d \n", strlen(s25));
}

The commands to compile and
execute StruChr.p and
StruChrMain.c

hostname% pc -c StruChr.p
hostname% cc StruChr.o StruChrMain.c -lpc
hostname% a.out
 s25='St. Petersburg'
 strlen(s25) = 13

The C–Pascal Interface 107

6

Consider this example:

The Pascal routine,
DayWeather.p

type
 TDayWeather = record

TDay: array [0..8] of char;
TWeather: array [0..20] of char;

 end;

 TDayWeatherArray = array [0..1] of TDayWeather;

procedure DayWeather(var W: TDayWeatherArray;
 var WeatherSize: integer);
begin
 W[1].TDay := 'Sunday' + chr(0);
 W[1].TWeather := 'Sunny' + chr(0);
 WeatherSize := 5;
end; { StruChr }

The C main program,
DayWeatherMain.c

#include <stdio.h>
#include <string.h>

struct TDayRec {
 char TDay[9];
 char TWeather[21];
};

extern void DayWeather(struct TDayRec [], int *);

int main(void)
{
 char s25[25];
 char t25[25];
 struct TDayRec dr[2];
 int nbytes = 0;

 DayWeather(dr, &nbytes);
 strncpy(s25, dr[1].TDay, 6);
 printf(" day = '%s' \n", s25);
 strncpy(t25, dr[1].TWeather, nbytes);
 printf(" weather = '%s' \n", t25);
}

108 Pascal 4.0 User’s Guide

6

When you compile the Pascal routine without using the -calign option, the
program does not work correctly.

Variant Records

C equivalents of variant records can sometimes be constructed, although there
is some variation with architecture and sometimes a need to adjust alignment.
You can avoid the need to adjust alignment by using the -calign option.

The commands to compile and
execute DayWeather.p and
DayWeatherMain.c without
-calign

hostname% pc -c DayWeather.p
hostname% cc DayWeather.o DayWeatherMain.c -lpc
hostname% a.out
 day = ''
 weather = ' sun'

The commands to compile and
execute DayWeather.p and
DayWeatherMain.c with
-calign

hostname% pc -calign -c DayWeather.p
hostname% cc DayWeather.o DayWeatherMain.c -lpc
hostname% a.out
 day = 'Sunday'
 weather = 'sunny'

The Pascal procedure,
VarRec.p

type
 vr = record
 case tag: char of
 'a': (ch1, ch2: char);
 'b': (flag: boolean);
 'K': (ALIGN: integer);
 end;

procedure VarRec(var x: vr);
begin
 if x.ch1 = 'a' then
 x.ch2 := 'Z'
end; { VarRec }

The C–Pascal Interface 109

6

The C main program,
VarRecMain.c

#include <stdio.h>

 struct vlr {
 char tag;
 union {
 struct {
 char ch1, ch2;
 }a_var;
 struct {
 char flag;
 }b_var;
 struct {
 int ALIGN;
 }c_var;
 }var_part;
};

extern void VarRec(struct vlr *);

int main(void)
{
 struct vlr *x;

 x = (struct vlr *)malloc(sizeof(struct vlr));
 x->tag = 'a';
 x->var_part.a_var.ch1 = 'a';
 x->var_part.a_var.ch2 = 'b';
 VarRec(x);
 printf(" %c \n", x->var_part.a_var.ch2);
}

The commands to compile and
execute VarRec.p and
VarRecMain.c

hostname% pc -c -calign VarRec.p
hostname% cc VarRec.o VarRecMain.c -lpc
hostname% a.out
 Z

110 Pascal 4.0 User’s Guide

6

Pascal Set Type

In Pascal, a set type is implemented as a bit vector, which is similar to a C
short-word array. Direct access to individual elements of a set is highly
machine-dependent and should be avoided.

In Pascal, bits are numbered within a byte from the most significant to least, as
shown in Table 6-3.

In C, a set could be described as a short-word array beginning at an even
address. With the current set representation, it does not matter what the
lower-bound value is.

The nth element in a set [lower...upper] can be tested as follows:

Table 6-3 Set Implementation

Set Bit Numbering

set+3: 31, 30, 29, 28, 27, 26, 25, 24

set+2: 23, 22, 21, 20, 19, 18, 17, 16

set+1: 15, 14, 13, 12, 11, 10, 9, 8

set+0: 7, 6, 5, 4, 3, 2, 1, 0

#define LG2BITSLONG 5 /* log2(bits in long word) */
#define LG2BITSWORD 4 /* log2(bits in short word) */
#define MSKBITSLONG 0x1f
#define MSKBITSHORT 0x0

short *setptr; /* set as array of shorts */
int upper; /* upper bound of the set */
int elem; /* ordinal value of set element */
int i;

if (setptr[elem >> LG2BITSWORD] &
(1 << (elem & MSKBITSWORD))) {

 /* elem is in set */
}

The C–Pascal Interface 111

6

Pascal intset Type

The Pascal intset type is predefined as set of [0..127] . A variable of
this type takes 16 bytes of storage.

The Pascal procedure,
IntSetVar.p , which has an
intset of the elements
[1, 3, 7, 8]

procedure IntSetVar(var s: intset);
begin
 s := [1, 3, 7, 8]
end; { IntSetVar }

The C main program,
IntSetVarMain.c

#include <stdio.h>

extern void IntSetVar(unsigned int *);

int main(void)
{
 int w ;
 unsigned int *p, *s ;

 s = (unsigned int *) malloc(16);
 IntSetVar(s) ;
 for (w = 0, p = s ; w < 4 ; w++, p++)
 printf("%012o %3d \n", *p, w);
 printf(" 110 001 010 (binary, word 4) \n");
 printf(" 876 543 210 (bits, word 4)" \n");
}

The commands to compile and
execute IntSetVar.p and
IntSetVarMain.c . The
output of this example depends
on the architecture of your
machine.

hostname% pc -c IntSetVar.p
hostname% cc IntSetVar.o IntSetVarMain.c -lpc
hostname% a.out
 000000000000 0
 000000000000 1
 000000000000 2
 000000000612 3
 110 001 010 (binary, word 4)
 876 543 210 (bits, word 4)

112 Pascal 4.0 User’s Guide

6

Value Parameters

There are three types of value parameters in Pascal.

Simple Types without –xl

Without –xl , simple types match, as in the following example:

The Pascal procedure,
SimVal. p . t , f , c , i , r , and s
are value parameters.

procedure SimVal(
t, f: boolean;
c: char;
si: integer16;
i: integer;
sr: shortreal;
r: real;
var reply: integer);

begin
 Reply := 0;
 if t then
 Reply := Reply + 1;
 if not f then
 Reply := Reply + 8;
 if c='z' then
 Reply := Reply + 64;
 if si=9 then
 Reply := Reply + 512;
 if i=9 then
 Reply := Reply + 4096;
 if sr=shortreal(9.9) then
 Reply := Reply + 32768;
 if r=9.9 then
 Reply := Reply + 262144;
end; { SimVal }

The C–Pascal Interface 113

6

If no function prototype is provided for SimVal in SimValMain.c , then
sr:shortreal must be changed to sr:real in SimVal.p . This change is
necessary because in C, a float is promoted to double in the absence of
function prototypes. In -xl mode, change sr:shortreal to sr:longreal .

Simple Types with –xl

With -xl , the Pascal real must be paired with a C float , and the Pascal
integer must be paired with a C short int .

The C main program,
SimValMain.c

#include <stdio.h>

extern void SimVal(
 char, char, char,
 short,
 int,
 float,
 double,
 int *);

int main(void)
{
 char t = 1, f = 0;
 char c = 'z';
 short si = 9;
 int i = 9;
 float sr = 9.9;
 double r = 9.9;
 int args;

 SimVal(t, f, c, si, i, sr, r, &args);
 printf(" args = %06o \n", args);

The commands to compile and
execute SimVal.p and
SimValMain.c

hostname% pc -c SimVal.p
hostname% cc SimVal.o SimValMain.c -lpc
hostname% a.out
 args=111111

114 Pascal 4.0 User’s Guide

6

Arrays

Since C cannot pass arrays by value, it cannot pass strings of characters, fixed
arrays, or univ arrays by value.

Conformant Arrays

Pascal passes all value parameters on the stack or in registers, except for value
conformant array parameters, which are handled by creating a copy in the
caller environment and passing a pointer to the copy. In addition, the bounds
of the array must be passed (see “Conformant Arrays” on page 101).

This example is the same as the single-dimension example in “Conformant
Arrays,” except that the var prefix is deleted.

The Pascal procedure,
ChrCAVal.p

procedure ChrCAVal(a: array [lb..ub: integer] of char);
begin
 a[0] := 'T';
 a[13] := 'o';
end; { ChrCAVal }

The C main program,
ChrCAValMain.c

#include <stdio.h>

extern void ChrCAVal(char [], int, int);

int main(void)
{
 static char s[] = "This is a string";

 ChrCAVal(s, 0, sizeof(s) -1);
 printf(" %11s \n", s);
}

The C–Pascal Interface 115

6

Function Return Values

Function return values match types the same as with parameters, and they
pass in much the same way.

Simple Types

The simple types pass in a straightforward way, as follows:

The commands to compile and
execute ChrCAVal.p and
ChrCAValMain.c with
-calign

hostname% pc -c -calign ChrCAVal.p
hostname% cc ChrCAVal.o ChrCAValMain.c -lpc
hostname% a.out
This is a string

The Pascal function,
RetReal.p

function RetReal(x: real): real;
begin
 RetReal := x + 1.0
end; { RetReal }

The C main program,
RetRealMain.c

#include <stdio.h>

extern double RetReal(double);

int main(void)
{
 double r, s;

 r = 2.0;
 s = RetReal(r);
 printf(" %f \n", s);
}

116 Pascal 4.0 User’s Guide

6

Input and Output

If your C main program calls a Pascal procedure that does I/O, then include
the following code in the C main program before you call the Pascal procedure:

Also, in the C main program just before exit, add the following line:

See this example:

The commands to compile and
execute RetReal.p and
RetRealMain.c

hostname% pc -c RetReal.p
hostname% cc RetReal.o RetRealMain.c
hostname% a.out
 3.000000

__PC0__PCSTART();

__PC0__PCEXIT();

The Pascal procedure, IO.p procedure IO;
begin
 writeln('Hello Pascal and St. Petersburg!');
end;

The C main program, IOMain.c #include <stdio.h>

extern void IO();

int main(void)
{

IO();
printf("Hello C! \n");

}

The C–Pascal Interface 117

6

Procedure Calls: Pascal–C
This section parallels the section, “Procedure Calls: C–Pascal” on page 93.
Earlier comments and restrictions also apply here.

Variable Parameters

Pascal passes all variable parameters by reference, which C can do, too.

Simple Types

Simple types pass in a straightforward manner, as follows:

The commands to compile and
execute IO.p and IOMain.c

hostname% pc -c IO.p
hostname% cc IO.o IOMain.c -lpc
hostname% a.out
 Hello Pascal and St. Petersburg!
 Hello C!

The C function, SimRef.c void SimRef(
 char *t,
 char *f,
 char *c,
 short *si,
 int *i,
 float *sr,
 double *r)
{
 *t = 1;
 *f = 0;
 *c = 'z';
 *si = 9;
 *i = 9;
 *sr = 9.9;
 *r = 9.9;
}

118 Pascal 4.0 User’s Guide

6

Strings of Characters

The alfa and string types pass simply; varying strings are more
complicated. All pass by reference.

The Pascal main program,
SimRefMain.p

program SimRefMain(output);
var
 t, f: boolean;
 c: char;
 si: integer16;
 i: integer;
 sr: shortreal;
 r: real;

procedure SimRef(
 var t, f: boolean;
 var c: char;
 var si: integer16;
 var i: integer;
 var sr: shortreal;
 var r: real);
 external c;
begin
 SimRef(t, f, c, si, i, sr, r);
 writeln(t, f: 6, c: 2, si: 2, i: 2, sr :4:1, r :4:1);
end. { SimRefMain }

The commands to compile and
execute SimRef.c and
SimRefMain.p

hostname% cc -c SimRef.c
hostname% pc SimRef.o SimRefMain.p
hostname% a.out
true false z 9 9 9.9 9.9

The C–Pascal Interface 119

6

The C function, StrVar.c #include <string.h>

struct TVarLenStr {
 int nbytes;
 char a[26];
};

void StrVar(char *s10, char *s80, struct TVarLenStr *vls)
{
 static char ax[11] = "abcdefghij";
 static char sx[81] = "abcdefghijklmnopqrstuvwxyz";
 static char vx[6] = "varstr";

 strncpy(s10, ax, 11);
 strncpy(s80, sx, 80);
 strncpy(vls->a, vx, 6);
 vls->nbytes = 6;
}

The Pascal main program,
StrVarMain.p

program StrVarMain(output);
type
 TVarStr = varying[26] of char;

var
 a: alfa;
 s: string;
 v: TVarstr;

procedure StrVar(var a: alfa; var s: string; var v: TVarStr);
external c;

begin
 StrVar(a, s, v);
 writeln(a);
 writeln(s);
 writeln(v);
 writeln(' length(v) = ', length(v) :2);
end. { StrVarMain }

120 Pascal 4.0 User’s Guide

6

Avoid constructs that rely on strings being in static variable storage. For
example, you could use mktemp(3) in Pascal as follows:

This use is incorrect, since mktemp() modifies its argument. Instead, use the C
library routine strncpy() (see string (3)) to copy the string constant to a
declared char array variable, as in:

The commands to compile and
execute StrVar.c and
StrVarMain.p

hostname% cc -c StrVar.c
hostname% pc StrVar.o StrVarMain.p
hostname% a.out
abcdefghij
abcdefghijklmnopqrtstuvwxyz
varstr
 length(v) = 6

Incorrect use of string in static
variable storage

tmp := mktemp('/tmp/eph.xxxxxx')

Correct solution using the C
library routine strncpy()

program Use_mktemp ;

procedure strncpy(var dest: univ string ;
var srce: univ string ;
length: integer) ; external c ;

procedure mktemp(var dest: univ string); external c;
...

var path: string ;
begin

...
strncpy(path, '/tmp/eph.xxxxxx', sizeof(path)) ;
mktemp(path) ;

...
end .

The C–Pascal Interface 121

6

Fixed Arrays

For a fixed-array parameter, pass the same type and size, as in this example:

The -calign option is not needed for this example, but may be necessary if
the array parameter is an array of aggregates.

The C function, FixVec.c void FixVec(int V[9], int *Sum)
{
 int i;

 *Sum = 0;
 for (i = 0; i <= 8; i++)

 *Sum = *Sum + V[i];
}

The Pascal main program,
FixVecMain.p

program FixVecMain(output);
type
 TVec = array [0..8] of integer;
var
 V: TVec := [0, 1, 2, 3, 4, 5, 6, 7, 8];
 Sum: integer;

procedure FixVec(var XV: TVec; var XSum: integer); external c;

begin
 FixVec(V, Sum);
 writeln(Sum: 3);
end. { FixVecMain }

The commands to compile and
execute FixVec.c and
FixVecMain.p

hostname% cc -c FixVec.c
hostname% pc -calign FixVec.o FixVecMain.p
hostname% a.out
 36

122 Pascal 4.0 User’s Guide

6

The univ Arrays

The univ arrays that are in , out , in out, or var parameters pass by
reference.

Here is an example:

The C function, UniVec.c void UniVec(int V[3], int Last, int *Sum)
{
 int i;

 *Sum = 0;
 for (i = 0; i <= Last; i++)

*Sum += V[i];
}

The Pascal main program,
UniVecMain.p

program UniVecMain(output);
type
 TVec = array [0..9] of integer;
var
 Sum: integer;
 V: array [0..2] of integer;

procedure UniVec(var V: univ TVec; in Last: integer;
 var Sum: integer);

external c;

begin
 V[0] := 7;
 V[1] := 8;
 V[2] := 9;
 UniVec(V, 2, Sum);
 writeln(Sum);
end. { UniVecMain }

The commands to compile and
execute UniVec.c and
UniVecMain.p

hostname% cc -c UniVec.c
hostname% pc -calign UniVec.o UniVecMain.p
hostname% a.out

 24

The C–Pascal Interface 123

6

The -calign option is not needed for this example, but may be necessary if
the array parameter is an array of aggregates.

Conformant Arrays

For single-dimension conformant arrays, pass upper and lower bounds placed
after the declared parameter list. If the array is multidimensional, pass
element widths as well, one element width for each dimension, except the last
one. Chapter 8, “The FORTRAN–Pascal Interface,” has an example of
multidimensional conformant array passing.

The following example uses a single-dimension array:

The C function, IntCA.c void IntCA(int a[], int lb, int ub)
{

int k;

 for (k=0; k <= ub - lb; k++)
a[k] = 4;

}

The Pascal main program,
IntCAMain.p . Note that what
Pascal passes as s , is received
in C as a, lb , ub .

program IntCAMain(output);

var
 s: array [1..3] of integer;
 i: integer;

procedure IntCA(var a: array [lb..ub: integer] of integer);
external c;

begin
 IntCA(s);
 for i := 1 to 3 do
 write(s[i]);
 writeln
end. { IntCAMain }

124 Pascal 4.0 User’s Guide

6

The -calign option is not needed for this example, but may be necessary if
the array parameter is an array of aggregates.

Records and Structures

In most cases, a Pascal record describes the same objects as its C structure
equivalent, provided that the components have compatible types and are
declared in the same order. For more information, see “Compatibility of Types
for C and Pascal” on page 90.

Records that contain aggregates may differ because aggregates in C and Pascal
sometimes have different sizes and alignments. If you compile the Pascal code
with the -calign option, the differences are eliminated.

A Pascal record of an integer and a character string matches a C structure of an
integer and an array of char values, as follows:

The commands to compile and
execute IntCA.c and
IntCAMain.p

hostname% cc -c IntCA.c
hostname% pc -calign IntCA.o IntCAMain.p
hostname% a.out

4 4 4

The C function, StruChr.c #include <string.h>

struct TVarLenStr {
 int nbytes;
 char a[26];
};

void StruChr(struct TVarLenStr *v)
{
 strncpy(v->a, "strvar", 6);
 v->nbytes = 6;
}

The C–Pascal Interface 125

6

Variant Records

C equivalents of variant records can sometimes be constructed, although there
is some variation with the architecture, and sometimes you have to adjust the
alignment.

The Pascal main program,
StruChrMain.p

program StruChrMain(output);
type
 TVarLenStr = record
 nbytes: integer;
 a: array [0..25] of char
 end;
var
 vls: TVarLenStr;
 i: integer;

procedure StruChr(var vls: TVarLenStr); external c;

begin
 StruChr(vls);
 write(' string=''');
 for i := 0 to vls.nbytes - 1 do
 write(vls.a[i]);
 writeln('''');
 writeln(' length = ', vls.nbytes)
end. { StruChrMain }

The commands to compile and
execute StruChr.c and
StruChrMain.p

hostname% cc -c StruChr.c
hostname% pc -calign StruChr.o StruChrMain.p
hostname% a.out
 string=' strvar'
 length= 6

126 Pascal 4.0 User’s Guide

6

Following are some examples:

The C function, VarRec.c struct vlr {
 char tag;
 union {

struct {
 char ch1, ch2;

} a_var;
struct {
 char flag;

} b_var;
struct {

 int ALIGN;
} c_var;

 } var_part;
};

void VarRec(struct vlr *x)
{
 if (x->var_part.a_var.ch1 == 'a')

x->var_part.a_var.ch2 = 'Z';
}

The C–Pascal Interface 127

6

The -calign option is not needed in the previous example, but may be
necessary if the record contains aggregates.

Non-Pascal Procedures

When you use the -xl option in compiling Pascal code, you can use the
nonpascal keyword to declare that an external procedure is written in
another language. This keyword generally causes everything to be passed by
reference.

The Pascal main program,
VarRecMain.p

program VarRecMain;
type
 vr = record
 case tag: char of
 'a': (ch1, ch2: char);
 'b': (flag: boolean);
 'K': (ALIGN: integer)
 end;
var
 x: vr;

procedure VarRec(var d: vr); external c;

begin
 x.tag := 'a';
 x.ch1 := 'a';
 x.ch2 := 'b';
 VarRec(x);
 writeln(x.ch2)
end. { VarRecMain }

The commands to compile and
execute VarRec.c and
VarRecMain.p

hostname% cc -c VarRec.c
hostname% pc -calign VarRec.o VarRecMain.p
hostname% a.out
Z

128 Pascal 4.0 User’s Guide

6

See this example:

The C function, NonPas.c . In
the function for_C , s is a
pointer (declared var in the
procedure declaration), and len
is not a pointer (not declared
var in the procedure
declaration). In the function
for_nonpascal , s is still a
pointer (though not declared
var in the procedure
declaration), and len is now a
pointer (though not declared
var).

#include <stdio.h>

void for_C(char *s, int len)
{
 int i;
 for (i = 0; i < len; i++)

putchar(s[i]);
 putchar('\n');
}

void for_NonPascal(char *s, int *len)
{
 int i;
 for (i = 0; i < *len; i++)

putchar(s[i]);
 putchar('\n');
}

The Pascal main program,
NonPasMain.p

program NonPasMain;
var
 s: string;

procedure for_C(var s: string; len: integer); external c;
procedure for_NonPascal(var s: string; len: integer); nonpascal;

begin
 s :='Hello from Pascal';
 for_C(s, 18);
 for_NonPascal(s, 18);
end. { NonPasMain }

The commands to compile and
execute NonPas.c and
NonPasMain.p

hostname% cc -c NonPas.c
hostname% pc NonPas.o NonPasMain.p
hostname% a.out
 Hello from Pascal
 Hello from Pascal

The C–Pascal Interface 129

6

Value Parameters

In general, Pascal passes value parameters in registers or on the stack,
widening to a full word if necessary.

Simple Types

With value parameters, simple types match, as in the following example:

The C function, SimVal.c void SimVal(
 char t,
 char f,
 char c,
 short si,
 int i,
 float sr,
 double r,
 int *reply)
{
 *reply = 0;
 if (t) *reply += 01;
 if (!f) *reply += 010;
 if (c == 'z') *reply += 0100;
 if (si == 9) *reply += 01000;
 if (i == 9) *reply += 010000;
 if (sr ==(float)9.9) *reply += 0100000;
 if (r == 9.9) *reply +=01000000;
}

130 Pascal 4.0 User’s Guide

6

Function Return Values

Function return values match types in the same manner as with parameters,
and they pass in much the same way. See “Variable Parameters” on page 94.
The following example shows how to pass simple types.

The Pascal main program,
SimValMain.p

program SimVal(output);

var
 t: boolean := true;
 f: boolean := false;
 c: char := 'z';

si: integer16 := 9;
 i: integer := 9;
 sr: shortreal := 9.9;
 r: double := 9.9;
 args: integer;

procedure SimVal(
 t, f: boolean;
 c: char;
 si: integer16;
 i: integer;
 sr: shortreal;
 r: double;
 var Reply: integer);
 external c;
begin
 SimVal(t, f, c, si, i, sr, r, args);
 writeln(' args = ', args :6 oct);
end. { SimVal }

The commands to compile and
execute SimVal.c and
SimValMain.p

hostname% cc -c SimVal.c
hostname% pc SimVal.o SimValMain.p
hostname% a.out
 args=111111

The C–Pascal Interface 131

6

Parameters That Are Pointers to Procedures

Pascal has a special type that is a pointer to a procedure. A variable of this
type can be used as a parameter, as follows:

The C function, RetReal.c double RetReal(double *x)
{
 return(*x + 1.0);
}

The Pascal main program,
RetRealMain.p

program RetRealMain;
var
 r, s: real;

function RetReal(var x: real): real; external c;

begin
 r := 2.0;
 s := RetReal(r);
 writeln(r: 4: 1, s: 4: 1)
end. { RetRealMain }

The commands to compile and
execute RetReal.c and
RetRealMain.p

hostname% cc -c RetReal.c
hostname% pc RetReal.o RetRealMain.p
hostname% a.out
 2.0 3.0

The C function, ProcPar.c #include <string.h>

void proc_c (void (*p)()) /* a pointer to procedure argument */
{
 char *s ;
 s = "Called from C";
 (*p)(s, strlen(s)); /* Call the Pascal routine */
}

132 Pascal 4.0 User’s Guide

6

Procedures and Functions as Parameters
It is probably clearer to pass a pointer to a procedure than to pass the
procedure name itself. See “Procedure Calls: Pascal–C” on page 117.

A procedure or function passed as an argument is associated with a static link
to its lexical parent’s activation record. When an outer block procedure or
function is passed as an argument, Pascal passes a null pointer in the position
normally occupied by the passed routine’s static link. So that procedures and

The Pascal main program,
ProcParMain.p , which calls the
C procedure, proc_c , passing it
the address of the Pascal
procedure, proc_pas . The C
procedure assigns a value to the
string s , and calls the procedure
whose pointer it just received.
Then the Pascal procedure,
proc_pas , writes a literal
constant and the string it just
received.

program ProcParMain;
type
 { Declare a procedure pointer type. }
 proc_ptr = ^procedure(var s: string; i: integer);

{Declare an external C procedure which takes a procedure argument.}

procedure proc_c(p: proc_ptr); external c;

procedure proc_pas(var cstr: string; strlen: integer);
var
 i: integer;
begin
 write('Hello from PROC_PASCAL: ');
 for i := 1 to strlen do
 write(cstr[i])
 writeln;
end; { proc_pas }

begin
 { Call the C routine. }
 proc_c(addr(proc_pas))
end. { ProcParMain }

The commands to compile and
execute ProcPar.c and
ProcParMain.p

hostname% cc -c ProcPar.c
hostname% pc ProcPar.o ProcParMain.p
hostname% a.out
 Hello from PROC_PASCAL: Called from C

The C–Pascal Interface 133

6

functions can be passed to other languages as arguments, the static links for all
procedure or function arguments are placed after the end of the conformant
array bounds pairs, if any.

Routines in other languages can be passed to Pascal; a dummy argument must
be passed in the position normally occupied by the passed routine’s static link.
If the passed routine is not a Pascal routine, the argument is used only as a
placeholder.

Global Variables in C and Pascal
If the types are compatible, a global variable can be shared between C and
Pascal.

An example:

The Pascal procedure,
GloVar.p

var
 Year: integer;

procedure GloVar;
begin
 Year := 2001
end; { GloVar }

The C main program,
GloVarMain.c

#include <stdio.h>

extern void GloVar();

int Year;

int main(void)
{
 Year = 2042;
 GloVar();
 printf(" %d \n", Year) ;
}

134 Pascal 4.0 User’s Guide

6

File-Passing Between Pascal and C
You can pass a file pointer from Pascal to C, then have C do the I/O, as in:

The commands to compile and
execute GloVar.p and
GloVarMain.c without –xl .
With -xl , the Pascal integer
must be paired with a C short
int and declared public since
the default visibility is private .

hostname% pc -c GloVar.p
hostname% cc GloVar.o GloVarMain.c
hostname% a.out
 2001

The C procedure,
UseFilePtr.c

#include <stdio.h>

void UseFilePtr (FILE *ptr)
{
 { /* Write to the file: */
 fprintf(ptr, "[1] Passing the file descriptor \n") ;
 fprintf(ptr, "[2] and writing information \n") ;
 fprintf(ptr, "[3] to a file \n") ;
}

The Pascal main program,
UseFilePtrMain.p

program UseFilePtrMain;
var
 f: text;
 cfile: univ_ptr;

procedure UseFilePtr(cf: univ_ptr); external c;

begin
 rewrite(f, 'myfile.data'); { Make the file. }
 cfile := getfile(f); { Get a file pointer. }
 UseFilePtr(cfile); { Call the C function. }
end. { UseFilePtrMain }

The C–Pascal Interface 135

6

The commands to compile and
execute UseFilePtc.c and
UseFilePtrMain.p

hostname% cc -c UseFilePtr.c
hostname% pc UseFilePtr.o UseFilePtrMain.p
hostname% a.out
hostname% cat myfile.data
[1] Passing the file descriptor
[2] and writing information
[3] to a file

136 Pascal 4.0 User’s Guide

6

137

The C++–Pascal Interface 7

This chapter describes how to mix C++ and Pascal modules in the same
program. It contains the following sections:

Sample Interface
You must use the compiler option -lpc when you use CC to link a C++ main
routine that calls Pascal. -lpc denotes linking with the Pascal runtime
support library libpc . On the Solaris 1.x environment, if you use pc to link,
you must add the -lc option.

The -calign option causes pc to use data formats for aggregate objects
similar to those in C++.

Sample Interface page 137

Compatibility of Types for C++ and Pascal page 138

C++ Name Encoding page 138

Procedure Calls: C++–Pascal page 138

Procedure Calls: Pascal–C++ page 155

Global Variables in C++ and Pascal page 161

Pascal File Pointers to C++ page 162

138 Pascal 4.0 User’s Guide

7

Compatibility of Types for C++ and Pascal
Table 6-1 and Table 6-2 on page 90 list the default sizes and alignments of
compatible types for C and Pascal. They apply to C++ as well.

C++ Name Encoding
To implement function overloading and type-safe linkage, the C++ compiler
normally appends type information to the function names. To prevent the C++
compiler from doing so, and to allow Pascal to call a C++ function, declare the
C++ function with the extern "C" language construct. One common way to
do this is in the declaration of a function, like this:

For brevity, you can also combine extern "C " with the definition of the
function, as in:

Procedure Calls: C++–Pascal
Following are examples that illustrate how a C++ main program calls a Pascal
procedure. Included in each example are the Pascal procedure, the C++ main
program, and the commands to compile and execute the final program.

extern "C" void f (int);
...
void f (int) { /* ...body of f... */ }

extern "C" void f (int)
{ /* ...body of f... */ }

The Pascal procedure, Samp,
in the file, Samp.p

procedure Samp (var i: integer; var r: real);

begin
 i := 7;
 r := 3.14;
end

The C++–Pascal Interface 139

7

Arguments Passed by Reference

C++ arguments can be passed by reference. This section describes how they
work with Pascal.

The C++ main program,
SampMain.cc

#include <stdio.h>

extern "C" void Samp (int&, double&);
int main(void)
{
 int i;
 double d;
 Samp (i, d);
 printf ("%d %3.2f \n", i, d);
}

The commands to compile and
execute Samp.p and
SampMain.cc :c

hostname% pc -c Samp.p
hostname% CC Samp.o SampMain.cc -lpc
hostname% a.out
7 3.14

140 Pascal 4.0 User’s Guide

7

Simple Types without the -xl Option

Without the -xl option, simple types match, as in the following example:

The Pascal procedure,
SampRef, in the file, Samp.p

procedure SamRef (
 var t, f: boolean;
 var c: char;
 var i: integer;
 var s: integer16;
 var r: shortreal;
 var d: real
);

begin
 t := true;
 f := false;
 c := 'z';
 i := 9;
 s := 9;
 r := 9.9;
 d := 9.9;
end;

The C++–Pascal Interface 141

7

Simple Types with the -xl Option

With the -xl option, the Pascal real must be paired with a C++ float ; the
Pascal integer must be paired with a C++ short int .

The C++ main program,
SamRefMain.cc

#include <stdio.h>

extern "C" void SamRef (
 char &,
 char &,
 char &,
 int &,
 short &,

 float &,
 double &);

int main(void)
{
 char t, f, c;
 int i;
 short s;

 float r;
 double d;

SamRef (t, f, c, i, s, r, d);
printf ("%08o %08o %c %d %d %3.1f %3.1f \n",
 t, f, c, i, s, r, d);

}

The commands to compile and
execute SamRef.p and
SamRefMain.cc

hostname% pc -c SamRef.p
hostname% CC SimRef.o SamRefMain.cc -lpc
hostname% a.out
00000001 00000000 z 9 9 9.9 9.9

142 Pascal 4.0 User’s Guide

7

Strings of Characters

The C++ counterpart to the Pascal alfa and string types are arrays. The C++
counterpart to the Pascal varying type is a structure.

Here is an example:

The Pascal procedure,
StrRef.p

type
 TVarStr = varying [25] of char;

procedure StrRef (
 var a: alfa;
 var s: string;
 var v: TVarStr
);

begin
 a := 'abcdefghi' + chr(0);
 s := 'abcdefghijklmnopqrstuvwxyz' + chr(0);
 v := 'varstr' + chr(0);
end;

The C++–Pascal Interface 143

7

The C++ main program,
StrRefMain.cc

#include <stdio.h>
#include <string.h>

 struct TVarLenStr {
 int NBytes;
 char a[25];
};

extern "C" void StrRef (
 char *,
 char *,
 TVarLenStr &);

int main(void)
{
 struct TVarLenStr vls;
 char s10[10],

s80[80],
s25[25];

 vls.NBytes = 0;
 StrRef (s10, s80, vls);
 strncpy (s25, vls.a, vls.NBytes);
 printf (" s10 = '%s' \n s80 = '%s' \n s25 = '%s' \n",
 s10, s80, s25);
 printf (" strlen (s25) = %d \n", strlen(s25));

}

The commands to compile and
execute StrRef.p and
StrRefMain.cc

hostname% pc -c StrRef.p
hostname% CC StrRef.o StrRefMain.cc -lpc
hostname% a.out
s10 = 'abcdefghi'
s80 = 'abcdefghijklmnopqrstuvwxyz'
s25 = 'varstr'
strlen (s25) = 6

144 Pascal 4.0 User’s Guide

7

Fixed Arrays

The Pascal procedure,
FixVec.p

type
 TVec = array [0..8] of integer;

procedure FixVec (
 var V: TVec;
 var Sum: integer
);
 var
 i: integer;

begin
 Sum := 0;
 for i := 0 to 8 do
 Sum := Sum + V[i];
end;

The C++ main program,
FixVedMain.cc

#include <stdio.h>

extern "C" void FixVec (
 int [],
 int &);

int main(void)
{
 int Sum;
 static int a[] = {1,2,3,4,5,6,7,8,9};

 FixVec (a, Sum);

 printf (" %d \n", Sum);
}

The commands to compile and
execute FixVec.p and
FixVecMain.cc

hostname% pc -c FixVec.p
hostname% CC FixVec.o FixVecMain.cc -lpc
hostname% a.out
45

The C++–Pascal Interface 145

7

Although it does not apply to this example, arrays of aggregates in Pascal
have, by default, a size that is a multiple of four bytes. When you use the
-calign option to compile Pascal code, that difference from C++ is
eliminated.

The following example illustrates this point. The string 'Sunday' only gets
through to the C++ main program when you compile the Pascal routine using
the -calign option.

The Pascal procedure,
DaysOfWeek.p

type
 TDay = array [0..8] of char;
 TWeek = array [0..6] of TDay;
 TYear = array [0..51] of TWeek;

procedure DaysOfWeek (
 var Y: TYear
);

begin
 Y[1][1] := 'Sunday';
end;

The C++ main program,
DaysOfWeekMain.cc

#include <stdio.h>

extern "C" void DaysOfWeek (
 char [52][7][9]);

int main(void)
{
 char Year [52][7][9];

 DaysOfWeek (Year);

 printf (" Day = '%s' \n", Year[1][1]);
}

146 Pascal 4.0 User’s Guide

7

Records and Structures

A Pascal record of an integer and a character string matches a C++ structure of
the same constructs, as in this example:

The commands to compile and
execute DaysOfWeek.p and
DaysOfWeekMain.cc without
the -calign option

hostname% pc -c DaysOfWeek.p
hostname% CC DaysOfWeek.o DaysOfWeekMain.cc -lpc
hostname% a.out
Day = ''

The commands to compile and
execute DaysOfWeek.p and
DaysOfWeekMain.cc with the
-calign option

hostname% pc -c -calign DaysOfWeek.p
hostname% CC DaysOfWeek.o DaysOfWeekMain.cc -lpc
hostname% a.out
Day = 'Sunday'

The Pascal procedure,
StruChr.p . It is safer for the
Pascal procedure to explicitly
provide the null byte and include
it in the count before the string is
passed to C++.

type
 TLenStr = record
 NBytes: integer;
 ChrStr: array [0..24] of char;
 end;

procedure StruChr (
 var v: TLenStr
);

begin
 v.NBytes := 14;
 v.ChrStr := 'St.Petersburg' + chr(0);
end;

The C++–Pascal Interface 147

7

The C++ main program,
StruChrMain.cc

#include <stdio.h>
#include <string.h>

 struct TVarLenStr {
 int NBytes;
 char a[25];
 };

extern "C" void StruChr (
 TVarLenStr &);

int main(void)
{
 struct TVarLenStr vls;
 char s25[25];

 vls.NBytes = 0;
 StruChr (vls);
 strncpy (s25, vls.a, vls.NBytes);
 printf ("s25 = '%s' \n", s25);
 printf ("strlen (s25) = %d \n", strlen(s25));

}

The commands to compile and
execute StruChr.p and
StruChr.cc

hostname% pc -c StruChr.p
hostname% CC StruChr.o StruChrMain.cc -lpc
hostname% a.out
s25 = 'St.Petersburg'
strlen (s25) = 13

148 Pascal 4.0 User’s Guide

7

Consider this example:

The Pascal procedure,
DayWeather.p

type
 TDayWeather = record
 TDay: array [0..8] of char;
 TWeather:array [0..20] of char;
 end;
 TDayWeatherArray = array [0..1] of TDayWeather;

procedure DayWeather (
 var W: TDayWeatherArray;
 var WeatherSize: integer
);

begin
 W[1].TDay := 'Sunday';
 W[1].TWeather := 'Sunny';
 WeatherSize := 5;
end;

The C++–Pascal Interface 149

7

The C++ main program,
DayWeatherMain.cc

#include <stdio.h>
#include <string.h>

 struct TDayRec {
 char TDay[9];
 char TWeather[21];
 };

extern "C" void DayWeather (
 TDayRec [2],
 int &);

int main(void)
 {
 struct TDayRec dr[2];
 int NBytes;
 char s25[25];
 char t25[25];
 NBytes = 0;
 DayWeather (dr, NBytes);

 strncpy (s25, dr[1].TDay, 6);
 printf (" day = '%s' \n", s25);
 strncpy (t25, dr[1].TWeather, NBytes);
 printf (" weather = '%s' \n", t25);

}

150 Pascal 4.0 User’s Guide

7

Arguments Passed by Value

C++ arguments can be passed by value. In this section, we describe how they
work with Pascal.

When you compile the Pascal
routine without the
-calign option, the program
does not work correctly.

hostname% pc -c DayWeather.p
hostname% CC DayWeather.o DayWeatherMain.cc -lpc
hostname% a.out
day = ''
weather = ' Sun'

Compile with the -calign
option. The program now
works correctly.

hostname% pc -calign -c DayWeather.p
hostname% CC DayWeather.o DayWeatherMain.cc -lpc
hostname% a.out
 day = 'Sunday'
 weather = 'Sunny'

The C++–Pascal Interface 151

7

Simple Types without the -xl Option

Without the -xl option, simple types match, as in the following example:

The Pascal procedure,
SimVal.p

procedure SimVal(
 t, f: boolean;
 c: char;
 si:integer16;
 i: integer;
 sr:shortreal;
 r: real;
 var Reply: integer);

begin
 Reply := 0;
 if t then
 Reply := Reply + 1;
 if not f then
 Reply := Reply + 8
 if c='z' then
 Reply := Reply + 64;
 if si=9 then
 Reply := Reply + 512;
 if i=9 then
 Reply := Reply + 4096;
 if sr=shortreal(9.9) then
 Reply := Reply + 32768;
 if r=9.9 then
 Reply := Reply + 262144;

end;

152 Pascal 4.0 User’s Guide

7

Function Return Values

Function return values match types in the same manner as with parameters.
They pass in much the same way.

The C++ main program,
SimValMain.cc

#include <stdio.h>

extern "C" void SimVal(
 char,
 char,
 char,
 short,
 int,
 float,
 double,
 int &);

int main(void)
{
 char t = 1, f = 0, c= 'z';
 short si = 9;
 int i=9;
 float sr = 9.9;
 double r =9.9;
 int args;

 SimVal (t, f, c, si, i, sr, r, args);
 printf (" args = %07o \n", args);
 return 0;
}

The commands to compile and
execute SimVal.p and
SimVal.cc

hostname% pc -c SimVal.p
hostname% CC SimVal.o SimValMain.cc -lpc
hostname% a.out
args = 111111

The C++–Pascal Interface 153

7

Simple Types

Simple types pass in a straightforward way, as in the following example:

The Pascal function,
RetReal.p

function RetReal (r: real): real;

begin
 RetReal := r + 1
end;

The C++ main program,
RetRealMain.cc

#include <stdio.h>

extern "C" double RetReal (double);

int main(void)
{
 double r, s;
 r = 2.0;

 s = RetReal (r);

 printf (" %f \n", s);

}

The commands to compile and
execute RetReal.p and
RetRealMain.cc

hostname% pc -c RetReal.p
hostname% CC RetReal.o RetRealMain.cc -lpc
hostname% a.out
3.000000

154 Pascal 4.0 User’s Guide

7

Type shortreal

Input and Output

The Pascal function,
RetShortReal.p

function RetShortReal (r: shortreal): shortreal;

begin
 RetShortReal := r + 1.0
end;

The C++ main program,
RetShortRealMain.cc

#include <stdio.h>
#include <math.h>

extern "C" float RetShortReal (float);

int main(void)
{
 float r, s;
 r = 2.0;

 s = RetShortReal(r);

 printf (" %8.6f \n", s);

}

The commands to compile and
execute RetShortReal.p
and RetRealMain.cc

hostname% pc -c RetShortReal.p
hostname% CC RetShortReal.o RetShortRealMain.cc -lpc
hostname% a.out
3.000000

The Pascal function, IO.p procedure IO;
begin
 writeln ('Hello, Pascal & St.Petersburg !');
end;

The C++–Pascal Interface 155

7

Procedure Calls: Pascal–C++
A Pascal main program can also call C++ functions. The following examples
show you how to pass simple types and arguments and include the commands
that are used to compile and execute the final programs.

Arguments Passed by Reference

Pascal arguments can be passed by reference. Here we discuss how they work
with C++.

The C++ main program,
IOMain.cc

#include <stdio.h>

extern "C" {
 void IO ();
};

int main(void)
{
 IO ();

 printf ("Hello, C++ ! \n");

}

The commands to compile and
execute IO.p and IOMain.cc

hostname% pc -c IO.p
hostname% CC IO.o IOMain.cc -lpc
hostname% a.out
Hello, Pascal & St.Petersburg !
Hello, C++ !

156 Pascal 4.0 User’s Guide

7

Simple Types Passed by Reference

Simple types pass in a straightforward manner, as follows:

The C++ function, SimRef.cc extern "C"
void SimRef (

 char &t,
 char &f,
 char &c,
 int &i,
 short &s,

 float &r,
 double &d)
{
 t = 1;
 f = 0;
 c = 'z';
 i = 9;
 s = 9;

 r = 9.9;
 d = 9.9;
}

The C++–Pascal Interface 157

7

Arguments Passed by Value

Pascal arguments can also be passed by value. Here is how they work with
C++.

The Pascal main program,
SimRefMain.p

program SimRefMain (output);
var
 t, f: boolean;
 c: char;
 i: integer;
 s: integer16;

 r: shortreal;
 d: real;

procedure SimRef (
 var t, f: boolean;
 var c: char;
 var i: integer;
 var s: integer16;

 var r: shortreal;
 var d: real
); external C;

begin
 SimRef (t, f, c, i, s, r, d);
 writeln (t, f: 6, c: 2, i: 2, s: 2, r: 4: 1, d: 4: 1);
end.

The commands to compile and
execute SimRef.cc and
SimRefMain.p

hostname% CC -c SimRef.cc
hostname% pc SimRef.o SimRefMain.p
hostname% a.out
true false z 9 9 9.9 9.9

158 Pascal 4.0 User’s Guide

7

Simple Types

Simple types match with value parameters. See the following example:

The C++ function, SimVal.cc extern "C" void SimVal(
 char t,
 char f,
 char c,
 short si,
 int i,
 float sr,
 double r,
 int& Reply)
{
 Reply = 0;
 if (t) Reply += 01;
 if (! f) Reply += 010;
 if (c == 'z') Reply += 0100;
 if (si == 9) Reply += 01000;
 if (i == 9) Reply += 010000;
 if (sr == (float)9.9) Reply += 0100000;
 if (r == 9.9) Reply += 01000000;
}

The C++–Pascal Interface 159

7

Function Return Values

Function return values match types in the same manner as with parameters.
They pass in much the same way.

The Pascal main program,
SimValMain.p

program SimValMain(output);
var
 t: boolean := true;
 f: boolean := false;
 c: char := 'z';
 si:integer16:= 9;
 i: integer := 9;
 sr:shortreal:= 9.9;
 r: real := 9.9;
 args: integer;

procedure SimVal(
 t, f: boolean;
 c: char;
 si:integer16;
 i: integer;
 sr:shortreal;
 r: real;
 var Reply: integer); external C;

begin
 SimVal(t, f, c, si, i, sr, r, args);
 writeln(' args = ', args :7 oct);
end.

The commands to compile and
execute SimVal.cc and
SimValMain.p

hostname% CC -c SimVal.cc
hostname% pc SimVal.o SimValMain.p
hostname% a.out
args = 111111

160 Pascal 4.0 User’s Guide

7

The following example shows how to pass simple types:

The C++ function, RetReal.cc extern "C"
double RetReal (double &x)
{
 return (x + 1.0);
}

The Pascal main program,
RetRealMain.p

program RetRealMain (output);
var
 r, s: real;

function RetReal (var x: real): real; external C;

begin
 r := 2.0;
 s := RetReal (r);
 writeln (r: 4: 1,' Return - ', s: 4: 1);
end.

The commands to compile and
execute RetReal.cc and
RetRealMain.p

hostname% CC -c RetReal.cc
hostname% pc RetReal.o RetRealMain.p
hostname% a.out
 2.0 Return - 3.0

The C++–Pascal Interface 161

7

Global Variables in C++ and Pascal
If the types are compatible, a global variable can be shared between C++ and
Pascal. See this example:

The Pascal procedure,
GloVar.p

var
 Year: integer;

procedure GloVar;

begin
 Year := 1995;
end;

The C++ main program,
GloVarMain.cc

#include <stdio.h>

extern "C" void GloVar ();

int Year;

int main(void)
{
 Year = 2042;
 GloVar ();
 printf (" %d \n", Year);
}

The commands to compile and
execute GloVar.p and
GloVarMain.cc

hostname% pc -c GloVar.p
hostname% CC GloVar.o GloVarMain.cc -lpc
hostname% a.out
1995

162 Pascal 4.0 User’s Guide

7

Pascal File Pointers to C++
You can pass a file pointer from Pascal to C++, then have C++ do the I/O. See
this example.

The C++ procedure,
UseFilePtr.cc

#include <stdio.h>

extern "C"
void UseFilePtr (FILE* ptr)
{
 fprintf (ptr, "[1] \n");
 fprintf (ptr, "[2] \n");
 fprintf (ptr, "[3] \n");
}

The C++ main program,
UseFilePtrMain.p

program UseFilePtrMain (output);
var
 f: text;
 cfile: univ_ptr;

procedure UseFilePtr (cf: univ_ptr); external C;

begin
 rewrite (f, 'myfile.data');
 cfile := getfile (f);
 UseFilePtr (cfile);
end.

The commands to compile and
execute UseFilePtr.cc and
UseFilePtrMain.p

hostname% CC -c UseFilePtr.cc
hostname% pc UseFilePtr.o UseFilePtrMain.p
hostname% a.out
[1]
[2]
[3]

163

The FORTRAN–Pascal Interface 8

This chapter describes how to mix FORTRAN 77 and Pascal modules in the
same program. It contains the following sections:

Compiler Mixed-Language Programs
When you compile with the -v (verbose) option, the Pascal driver brings in the
runtime libraries for the main module.

However, when you compile a module that is not the main module, and which
is written in a language different from the main module, you must explicitly
bring in the runtime library on the command-line.

For example, you must use the compiler options –lpfc and –lpc when you
compile a FORTRAN main routine that calls Pascal. The –lpfc option links
the common startup code for programs containing mixed Pascal and
FORTRAN object libraries. The –lpc option includes the Pascal object library,
libpc .

Compiler Mixed-Language Programs page 163

Compatibility of Types for FORTRAN and Pascal page 164

General Parameter-Passing in FORTRAN and Pascal page 167

Procedure Calls: FORTRAN-Pascal page 168

Procedure Calls: Pascal-FORTRAN page 185

Routines as Parameters page 202

164 Pascal 4.0 User’s Guide

8

Specify –lpfc on the command-line before –lpc . For example:

The -c option to pc produces an unlinked object file.

When you compile a Pascal main routine that calls FORTRAN, you must use
the compiler options –lpfc and –lF77 . The –lF77 option links the
FORTRAN object library, libf77 .

You must specify -lpfc on the command-line before -lF77 . For example:

You can omit the libraries if the foreign language module does not interact
with the runtime environment, that is, it does no I/O, memory allocation, and
so on. However, there is no overhead to linking to an unused library;
therefore, always link in the appropriate runtime libraries, even if you think
you may not need them.

Compatibility of Types for FORTRAN and Pascal
Table 8-1 lists the default sizes and alignments of compatible types for
FORTRAN and Pascal.

hostname% pc -c my_pascal.p
hostname% f77 my_pascal.o my_fortran.f -lpfc -lpc
Sampmain.f:
 MAIN:

hostname% f77 -c my_fortran.f
hostname% pc my_fortran.o my_pascal.p -lpfc -lF77
my_fortran.f:
 MAIN:

The FORTRAN–Pascal Interface 165

8

Table 8-2 lists the default sizes and alignments of compatible types for
FORTRAN and Pascal with the -xl option:

Precautions with Compatible Types

This section describes the precautions you must take when working with
character strings and array indexes.

Table 8-1 Default Sizes and Alignments of Compatible Types (Pascal and FORTRAN)

Pascal Type FORTRAN Type Size (Bytes) Alignment (Bytes)

double double precision 8 8

longreal double precision 8 8

real double precision 8 8

single real 4 4

shortreal real 4 4

integer16 integer*2 2 2

integer32 integer*4 4 4

integer integer*4 4 4

-128..127 logical*1 , byte, or
character

1 1

boolean logical*1 , byte, or
character

1 1

alfa character*10 10 1

char character 1 1

string character*80 80 1

varying[n]
of char

structure /v/
integer*4
character*n
end structure

- 4

array array Same as element type

record structure - 4

Table 8-2 Sizes and Alignments of Compatible Types (Pascal and FORTRAN) with –xl

Pascal Type FORTRAN Type Size (Bytes) Alignment (Bytes)

real real 4 4

integer integer*2 2 2

166 Pascal 4.0 User’s Guide

8

Character Strings

There are some precautions to take with character strings regarding the null
byte, passing by value, and static storage:

• Set the byte count to zero before calling Pascal with a null varying string,
because that is what Pascal assumes about such strings.

• Pass a structure consisting of a 4-byte integer and an array of characters
from FORTRAN to a Pascal procedure, expecting a var parameter that is a
variable-length string.

• Pass by reference by making the strings var , in , out , or in out
parameters.

• Set the string to constant because FORTRAN and Pascal each guarantees the
null byte only if the string is a constant. Neither of them relies on the null
byte, which is not required by the ISO Pascal Standard.

Array Indexes

The Pascal and FORTRAN array indexes can start at any integer; be sure they
match.

Incompatibilities

There are several incompatibilities between Pascal and FORTRAN variant
records, enumerated types, and set types.

Variant Records

In general, Pascal variant records require adjustment of alignment to match
with FORTRAN unions and structures.

Enumerated Types

Pascal enumerated types have no comparable type in FORTRAN.

The FORTRAN–Pascal Interface 167

8

Pascal Set Types

In Pascal, a set type is implemented as a bit vector, which is similar to a
FORTRAN 16-bit word. Direct access to individual elements of a set is highly
machine-dependent and should be avoided.

Multidimensional Arrays

Pascal multidimension arrays are incompatible with FORTRAN multi-
dimension arrays. Since Pascal arrays use row-major indexing, and FORTRAN
arrays use column-major indexing, an array passed in either direction appears
to be transposed.

General Parameter-Passing in FORTRAN and Pascal
A few general rules apply to passing parameters:

• By default, FORTRAN passes all parameters by reference.

• In FORTRAN, if you want to pass anything by value, then you must
explicitly use the nonstandard function %VAL() .

• Pascal passes all parameters by value unless you explicitly state that they
are var , out , or in out parameters, in which case they are passed by
reference.

• The routine options nonpascal , extern fortran , and external
fortran pass by reference.

168 Pascal 4.0 User’s Guide

8

Procedure Calls: FORTRAN-Pascal
Here are examples of how a FORTRAN main program calls a Pascal procedure.

Variable Parameters

Pascal passes all var parameters by reference, FORTRAN’s default.

Simple Types without the –xl Option

With var parameters, simple types match.

The Pascal procedure, Samp.p .
Note the procedure definition.
The procedure name in the
procedure statement is in
lowercase with a trailing
underscore (_). This format is
required to match the conventions
of the FORTRAN compiler. var
parameters are used to match
FORTRAN defaults.

procedure samp_(var i: integer; var r: real);

begin
 i := 9;
 r := 9.9
end; { samp_ }

The FORTRAN main program,
Sampmain.f . Note the
procedure declaration and call.
FORTRAN converts to lowercase
by default; you do not explicitly
give the underscore (_).

integer i
 double precision d

 call Samp (i, d)
 write(*, '(I2, F4.1)') i, d
 stop
 end

The commands to compile and
execute Samp.p and
Sampmain.f

hostname% pc -c Samp.p
hostname% f77 Samp.o Sampmain.f -lpfc -lpc
Sampmain.f:
 MAIN:
hostname% a.out
 9 9.9

The FORTRAN–Pascal Interface 169

8

See the following example:

The Pascal procedure,
SimVar.p

procedure simvar_(var t, f: boolean; var c: char;
 var i: integer; var r: real;
 var si: integer16; var sr: shortreal);

begin
 t := true;
 f := false;
 c := 'z';
 i := 9;
 r := 9.9;
 si := 9;
 sr := 9.9
end; { simvar_ }

The FORTRAN main program,
SimVarmain.f

 logical*1 t, f
 character c
 integer*4 i
 double precision d
 integer*2 si
 real sr

 call SimVar (t, f, c, i, d, si, sr)

 write(*, "(L2,L2,A2,I2,F4.1,I2,F4.1)")
 & t, f, c, i, d, si,sr
 stop
 end

The commands to compile and
execute SimVar.p and
SimVarmain.f

hostname% pc -c SimVar.p
hostname% f77 SimVar.o SimVarmain.f -lpfc -lpc
SimVarmain.f:
 MAIN:
hostname% a.out
 T F z 9 9.9 9 9.9

170 Pascal 4.0 User’s Guide

8

Simple Types with the –xl Option

When you pass the -xl option, the Pascal data type real must be paired with
a FORTRAN data type real ; the Pascal data type integer must be paired
with a FORTRAN data type, integer*2 .

Strings of Characters

The FORTRAN counterpart to the Pascal alfa and string types is a
character string, and the FORTRAN counterpart to the Pascal varying is a
structure. By default, FORTRAN, passes all by reference:

The Pascal procedure,
StrVar.p

type
 varstr = varying [25] of char;

procedure strvar_(var a: alfa; var s: string;
 var v: varstr);

begin
 a := 'abcdefghij';
 s := 'abcdefghijklmnopqrtstuvwxyz';
 v := 'oyvay'
end; { strvar_ }

The FORTRAN main program,
StrVarmain.f

 structure /VarLenStr/
 integer nbytes
 character a*25
 end structure
 record /VarLenStr/ vls
 character s10*10, s80*80, s25*25
 vls.nbytes = 0
 Call StrVar(s10, s80, vls)
 s25(1:5) = vls.a(1:vls.nbytes)
 write (*, 1) s10, s80, s25
 1 format("s10='", A, "'",
& / "s80='", A, "'",
& / "s25='", A, "'")
 end

The FORTRAN–Pascal Interface 171

8

Fixed Arrays

For a fixed array parameter, pass the same type and size by reference, as
shown in the following example:

The commands to compile and
execute StrVar.p and
StrVarmain.f

hostname% pc -c StrVar.p
hostname% f77 StrVar.o StrVarmain.f -lpfc -lpc
StrVarmain.f:
 MAIN:
hostname% a.out
s10='abcdefghij'
s80='abcdefghijklmnopqrtstuvwxyz
s25='oyvay'

The Pascal procedure,
FixVec.p

type
 VecTyp = array [0..8] of integer;

procedure fixvec_(var V: VecTyp; var Total: integer);

var
 i: integer;

begin
 Total := 0;
 for i := 0 to 8 do
 Total := Total + V[i]
end; { fixvec_ }

The FORTRAN main program,
FixVecmain.f

 integer Sum
 integer a(9)
 data a / 1,2,3,4,5,6,7,8,9 /
 call FixVec (a, Sum)
 write(*, "(I3)") Sum
 stop
 end

172 Pascal 4.0 User’s Guide

8

The univ Arrays

You can pass any size array to a Pascal procedure expecting a univ array, but
there is no advantage in doing so, since there is no type or size checking for
separate compilations. However, if you want to use an existing Pascal
procedure that has a univ array, you can do so. All univ arrays that are in ,
out , in out, or var parameters pass by reference.

The commands to compile and
execute FixVec.p and
FixVecmain.f

hostname% pc -c FixVec.p
hostname% f77 FixVec.o FixVecmain.f -lpfc -lpc
hostname% a.out
FixVecmain.f:
 MAIN:

45

The Pascal procedure,
UniVec.p , which defines a 10-
element array

type
 VecTyp = array [0..9] of integer;

procedure univec_(in V:univ VecTyp; var Last: integer;
 var Total: integer);

var
 i: integer;

begin
 Total := 0;
 for i := 0 to Last do
 Total := Total + V[i]
end; { univec_ }

The FORTRAN main program,
UniVecmain.f , which passes
a 3-element array to the Pascal
procedure written to do a 10-
element array

 integer Sum
 integer a(0:2)
 data a / 7, 8, 9 /
 call UniVec (a, 2, Sum)
 write(*, "(I3)") Sum
 stop
 end

The FORTRAN–Pascal Interface 173

8

Conformant Arrays

For conformant arrays, with single-dimension array, pass upper and lower
bounds, placed after the declared parameter list, as in:

Pascal passes the bounds by value, so FORTRAN must pass them by value,
too.

One bounds pair may apply to several arrays if they are declared in the same
parameter group:

Examples of single-dimension array and array of character conformant arrays
follow. Conformant arrays are included here only because they are a relatively
standard feature; there are usually more efficient and simpler ways to do that.

The commands to compile and
execute UniVec.p and
UniVecmain.f

hostname% pc -c UniVec.p
hostname% f77 UniVec.o UniVecmain.f -lpfc -lpc
UniVecmain.f:
 MAIN:
hostname% a.out
 24

function ip(var x:array[lb..ub:integer] of real):real;
 ...

double precision v1(10)
double precision z
z = ip (v1, %VAL(0), %VAL(9))
...

function ip(var x,y:array[lb..ub:integer] of real):real;
...

double precision v1(10), v2(10)
double precision z
z = ip (v1, v2, %VAL(0), %VAL(9))

...

174 Pascal 4.0 User’s Guide

8

Example 1: Single-Dimension Array

Example 2: Array of Characters

The Pascal procedure,
IntCA.p . Pascal passes the
bounds by value.

procedure intca_(var a: array [lb..ub: integer] of integer);

begin
 a[1] := 1;
 a[2] := 2
end; { intca_ }

The FORTRAN main program,
IntCAmain.f

 integer k
 integer s(0:2)
 data s / 0, 0, 0 /
 call IntCA (s, %VAL(0), %VAL(2))
 do k = 0, 2
 write(*, "(I1)") s(k)
 end do
 stop
 end

The commands to compile and
execute IntCA.p and
IntCAmain.f

hostname% pc -c IntCA.p
hostname% f77 IntCA.o IntCAmain.f -lpfc -lpc
IntCAmain.f:
 MAIN:
hostname% a.out
0
1
2

The Pascal procedure,
ChrCA.p . Pascal passes the
bounds by value.

procedure chrca_(var a: array [lb..ub: integer] of char);

begin
 a[0] := 'T';
 a[13] := 'o'
end; { chrca_ }

The FORTRAN–Pascal Interface 175

8

Records and Structures

In most cases, a Pascal record describes the same objects as its FORTRAN
structure equivalent, provided that the components have compatible types and
are declared in the same order. The compatibility of the types depends mostly
on size and alignment.

For more information, see “Compatibility of Types for FORTRAN and Pascal”
on page 164.

The FORTRAN main program,
ChrCAmain.f

 character s*16
 data s / "this is a string" /
 call ChrCA(s, %VAL(0), %VAL(15))
 write(*, "(A)") s
 stop
 end

The commands to compile and
execute ChrCA.p and
CharCAmain.f

hostname% pc -c ChrCA.p
hostname% f77 ChrCA.o ChrCAmain.f -lpfc -lpc
ChrCAmain.f:
 MAIN:
hostname% a.out
This is a string

176 Pascal 4.0 User’s Guide

8

A Pascal record of an integer and a character string matches a FORTRAN
structure of the same. Consider these examples:

The Pascal procedure,
StruChr.p

type
 lenstr =
 record
 nbytes: integer;
 chrstr: array [0..25] of char
 end;

procedure struchr_(var v: lenstr);

begin
 v.chrstr := 'oyvay';
 v.nbytes := 5
end; { struchr_ }

The FORTRAN main program,
StruChrmain.f

 structure /VarLenStr/
 integer nbytes
 character a*25
 end structure
 record /VarLenStr/ vls
 character s25*25
 vls.nbytes = 0
 Call StruChr(vls)
 s25(1:5) = vls.a(1:vls.nbytes)
 write (*, 1) s25
 1 format("s25='", A, "'")
 stop
 end

The commands to compile and
execute Struchr.p and
StruChrmain.f

hostname% pc -c StruChr.p
hostname% f77 StruChr.o StruChrmain.f -lpfc -lpc
StruChrmain.f:
 MAIN:
hostname% a.out
s25='oyvay'

The FORTRAN–Pascal Interface 177

8

Variant Records

FORTRAN equivalents of variant records can sometimes be constructed,
although there is some variation with architecture, and sometimes you need to
adjust the alignment.

The Pascal procedure,
VarRec.p

type vr = record
 case tag: char of
 'a': (ch1, ch2: char) ;
 'b': (flag: boolean) ;
 'K': (ALIGN: integer) ;
 end ;

procedure varrec_ (var Rec: vr) ;

begin
 if (Rec.ch1 = 'a')
 then Rec.ch2 := 'Z'
end; { VarRec.p }

178 Pascal 4.0 User’s Guide

8

The FORTRAN main program,
VarRecmain.f . The variable
ALIGN is integer*2 , and is
needed to match the Pascal
variant record layout.

 structure /a_var/
 character ch1, ch2
 end structure
 structure /b_var/
 character flag
 end structure
 structure /c_var/
 integer*2 ALIGN
 end structure
 structure /var_part/
 union
 map
 record /a_var/ a_rec
 end map
 map
 record /b_var/ b_rec
 end map
 map
 record /c_var/ c_rec
 end map
 end union
 end structure
 structure /vrnt/
 character tag
 record /var_part/ var_rec
 end structure
 record /vrnt/ VRec
 VRec.var_rec.a_rec.ch1 = 'a'
 VRec.var_rec.a_rec.ch2 = 'b'
 call varrec (VRec)
 write (*, *) VRec.var_rec.a_rec.ch2
 stop
 end

The commands to compile and
execute VarRec.p and
VarRecmain.f without –xl

hostname% pc -c VarRec.p
hostname% f77 VarRec.o VarRecmain.f
VarRecmain.f:
 MAIN:
hostname% a.out
b

The FORTRAN–Pascal Interface 179

8

Pascal Set Type

The Pascal set type is incompatible with FORTRAN.

Pascal intset Type

The Pascal intset type is predefined as set of [0..127] . A variable of
this type takes a minimum of 16 bytes of storage.

The Pascal procedure,
IntSetVar.p , which has an
intset of the elements
[1 , 3, 7, 8]

procedure intsetvar_(var s: intset);

begin
 s := [1, 3, 7, 8]
end; { intsetvar_ }

The FORTRAN main program,
IntSetVarmain.f

integer*2 s(8)
 pointer (ps, s)
 ps = malloc(16)
 call IntSetVar (s)
 do i = 5, 8
 write(*, 1) s(i), i
 end do
 1 format(o3,1x, 'octal (word', i2, ')')
 write(*, "('110 001 010 (binary, word 8)')")
 write(*, "('876 543 210 (bit nos, word 8)')")
 stop

180 Pascal 4.0 User’s Guide

8

Value Parameters

In general, Pascal passes value parameters on the stack.

Simple Types without the –xl Option

Without the -xl option, simple types match.

The commands to compile and
execute IntSetVar.p and
IntSetVarmain.f . The
output of this example depends
on the architecture of your
machine.

hostname% pc -c IntSetVar.p
hostname% f77 IntSetVar.o IntSetVarmain.f -lpfc -lpc
IntSetVarmain.f:
 MAIN:
hostname% a.out

0 octal (word 5)
0 octal (word 6)
0 octal (word 7)

612 octal (word 8)
110 001 010 (binary, word 8)
876 543 210 (bit nos, word 8)

The FORTRAN–Pascal Interface 181

8

See the following example:

The Pascal procedure,
SimVal.p . t , f , c , i , r , and s
are value parameters.

procedure simval_(t, f: boolean; c: char; i: integer;
 r: real; s: integer16; var reply: integer);

begin
 reply := 0;
 { If nth arg is ok, set nth octal digit to one. }
 if t then
 reply := reply + 1;
 if not f then
 reply := reply + 8;
 if c = 'z' then
 reply := reply + 64;
 if i = 9 then
 reply := reply + 512;
 if r = 9.9 then
 reply := reply + 4096;
 if s = 9 then
 reply := reply + 32768
end; { simval_ }

The FORTRAN main program,
SimValmain.f

 logical*1 t, f
 character c
 integer*4 i
 double precision d
 integer*2 s
 integer*4 args
 data t / .true. /, f / .false. /, c / 'z' /
& i / 9 /, d / 9.9 /, s / 9 /

 call SimVal(%VAL(t), %VAL(f), %VAL(c),
& %VAL(i), %VAL(d), %VAL(s), args)
 write(*, 1) args
 1 format('args=', o6, '(If nth digit=1, arg n OK)')
 stop
 end

182 Pascal 4.0 User’s Guide

8

Simple Types with the –xl Option

With the -xl option, match Pascal real with FORTRAN real and Pascal
integer with FORTRAN integer*2 .

You can pass by value using the %VAL() feature of FORTRAN.

Type shortreal

Unlike C, there is no problem with passing shortreal value parameters
between Pascal and FORTRAN. They can be passed exactly as in the previous
example, with the Pascal shortreal type matching the FORTRAN real type.

Arrays

Since FORTRAN cannot pass arrays by value, it cannot pass strings of
characters, fixed arrays, or univ arrays by value.

Conformant Arrays

Although Pascal generally passes all value parameters on the stack, the
exception is value-conformant array parameters, which are handled by
creating a copy in the caller environment and passing a pointer to the copy. In
addition, the bounds of the array must be passed. See “Conformant Arrays”
on page 173.

This example is the same as the one in the earlier section, except that the var
prefix is deleted.

The commands to compile and
execute SimVal.p and
SimValmain.f

hostname% pc -c SimVal.p
hostname% f77 SimVal.o SimValmain.f -lpfc -lpc
SimValmain.f:
 MAIN:
hostname% a.out
args=111111(If nth digit=1, arg n OK)

The FORTRAN–Pascal Interface 183

8

Pointers

Pointers are easy to pass, as shown in the following example:

Pascal procedure, ChrCAx.p procedure chrca_ (a: array [lb..ub:integer] of char) ;

begin
 a[0] := 'T' ;
 a[13] := 'o' ;
end; { chrca_ }

The FORTRAN main program,
ChrCAmain.f

 character s*16
 data s / "this is a string" /
 call ChrCA(s, %VAL(0), %VAL(15))
 write(*, "(A)") s
 stop
 end

The commands to compile and
execute ChrCAx.p and
ChrCAmain.f

hostname% pc -c ChrCAx.p
hostname% f77 ChrCAx.o ChrCAmain.f -lpfc -lpc
ChrCAmain.f:
 MAIN:
hostname% a.out
This is a string

The Pascal procedure,
PassPtr.p . In the Pascal
procedure statement, the name
must be all in lowercase, with a
trailing underscore (_).

type
 PtrInt = ^integer ;
 PtrReal = ^real ;
procedure passptr_ (var iPtr: PtrInt ;
 var dPtr: PtrReal) ;
begin
 iPtr^ := 9 ;
 dPtr^ := 9.9 ;
end ;

184 Pascal 4.0 User’s Guide

8

Function Return Values

Function return values match types the same as with parameters, and they
pass in much the same way. See “Procedure Calls: FORTRAN-Pascal” on
page 168.

The FORTRAN main program,
PassPtrmain.f . In the
FORTRAN main program, the
name is converted to lowercase.
Uppsercase is ignored.

 program PassPtrmain
 integer i
 double precision d
 integer iptr, dptr
 pointer (iPtr, i), (dPtr, d)
 iPtr = malloc(4)
 dPtr = malloc(8)
 i = 0
 d = 0.0
 call PassPtr (iPtr, dPtr)
 write(*, "(i2, f4.1)") i, d
 stop
 end

The commands to compile and
execute PastPtr.p and
PassPtrmain.f

hostname% pc -c PassPtr.p
hostname% f77 PassPtr.o PassPtrmain.f -lpfc -lpc
PassPtrmain.f:
 MAIN passptrmain:
hostname% a.out
9 9.9

The FORTRAN–Pascal Interface 185

8

Simple Types

The simple types pass in a straightforward way, as follows:

Type shortreal

There is no problem with returning a shortreal function value between
Pascal and FORTRAN. As in the previous example, it can be passed exactly,
with the Pascal shortreal type matching the FORTRAN real type (without
-xl).

Procedure Calls: Pascal-FORTRAN
This section parallels “Procedure Calls: FORTRAN-Pascal” on page 168. The
comments and restrictions given in that section apply here, also.

The Pascal function,
RetReal.p

function retreal_(var x: real): real;

begin
 retreal_ := x + 1
end; { retreal_ }

The FORTRAN main program,
RetRealmain.f

 double precision r, s, RetReal
 r = 2.0
 s = RetReal(r)
 write(*, "(2f4.1)") r, s
 stop
 end

The commands to compile and
execute RetReal.p and
RetRealmain.f without –xl

hostname% pc -c RetReal.p
hostname% f77 RetReal.o RetRealmain.f -lpfc -lpc
RetRealmain.f:
 MAIN:
hostname% a.out
 2.0 3.0

186 Pascal 4.0 User’s Guide

8

Variable Parameters

Pascal passes all var parameters by reference, the FORTRAN default.

Simple Types

Simple types pass in a straightforward manner, as follows:

The FORTRAN subroutine,
SimVar.f

 subroutine SimVar (t, f, c, i, d, si, sr)
 logical*1 t, f
 character c
 integer i
 double precision d
 integer*2 si
 real sr
 t = .true.
 f = .false.
 c = 'z'
 i = 9
 d = 9.9
 si = 9
 sr = 9.9
 return
 end

The FORTRAN–Pascal Interface 187

8

Strings of Characters

The alfa and string types pass simply; varying strings are a little tricky. All
pass by reference.

The Pascal main program,
SimVarmain.p

program SimVarmain(output);

var
 t, f: boolean;
 c: char;
 i: integer;
 r: real;
 si: integer16;
 sr: shortreal;

procedure simvar(var t, f: boolean; var c: char;
 var i: integer; var r: real;
 var si: integer16; var sr: shortreal);
 external fortran;

begin
 simvar(t, f, c, i, r, si, sr);
 writeln(t, f: 6, c: 2, i: 2, r: 4: 1, si: 2, sr: 4: 1)
end. { SimVarmain }

The commands to compile and
execute SimVar.p and
SimVarmain.p

hostname% f77 -c SimVar.f
SimVar.f:

simvar:
hostname% pc SimVar.o SimVarmain.p -lpfc -lF77
hostname% a.out
true false z 9 9.9 9 9.9

188 Pascal 4.0 User’s Guide

8

The FORTRAN subroutine,
StrVar.f

 subroutine StrVar (s10, s80, vls)
 character s10*10, s80*80
 structure /VarLenStr/
 integer nbytes
 character a*25
 end structure
 record /VarLenStr/ vls
 character ax*10, sx*80, vx*5
 data ax / "abcdefghij" /,
& sx / "abcdefghijklmnopqrstuvwxyz" /,
& vx / "oyvay" /
 s10(1:10) = ax(1:10)
 s80(1:80) = sx(1:80)
 vls.a(1:5) = vx(1:5)
 vls.nbytes = 5
 return
 end

The Pascal main program,
StrVarmain.p

program StrVarmain(output);

type
 varstr = varying [25] of char;

var
 a: alfa;
 s: string;
 v: varstr;

procedure strvar(var xa: alfa; var xs: string;
 var xv: varstr); external fortran;

begin
 strvar(a, s, v);
 writeln(a);
 writeln(s);
 writeln(v);
 writeln('length(v)= ', length(v): 2)
end. { StrVarmain }

The FORTRAN–Pascal Interface 189

8

Character Dummy Arguments

When you call FORTRAN 77 routines with character dummy arguments from
Pascal programs—that is, routines in which string arguments are specified as
character*(*) in the FORTRAN source, there is no explicit analogue in
Pascal.

So, if you try to simply pass an actual string and specify the FORTRAN routine
as extern fortran , the program fails, because implementation of this type
of arguments implies that the actual length of the string is implicitly passed as
an extra value argument after the string pointer.

To specify this routine in Pascal, declare it as having two arguments: a VAR
argument of string type for the string pointer, and an extra value argument of
integer32 type for the string length.

It is incorrect to specify the routine as extern fortran because Pascal passes
all arguments to FORTRAN routines by reference. Consequently, to pass this
type of argument, you must:

• Declare two arguments as described above, specifying the routine as simply
external (without the fortran directive)

• Add a trailing underscore to the routine name in a Pascal program

The commands to compile and
execute StrVar.f and
StrVarmain.p

hostname% f77 -c StrVar.f
StrVar.f:

strvar:
hostname% pc StrVar.o StrVarmain.p -lpfc -lF77
hostname% a.out
abcdefghij
abcdefghijklmnopqrstuvwxyz
oyvay
length(v)= 5

190 Pascal 4.0 User’s Guide

8

The following example illustrates this method:

The Pascal program, sun.pas program Test(input,output);
var
 s : string;

procedure mygrout_(var prompt :string; length :integer32); external;

begin
 writeln('Starting...');
 s := 'Trio Jeepy';
 mygrout_(s, 8);
 writeln('Ending...')
end.

The FORTRAN subroutine,
mygrout.f

 subroutine MyGrout(N)
 character*(*)N
 write(6,*) N
 return
 end

The commands to compile and
run this program

hostname% pc -g -c sun.pas
hostname% f77 -g sun.o mygrout.f -lpc
mygrout.f:
 mygrout:
hostname% a.out
Starting...
 Trio Jee
Ending...

The FORTRAN–Pascal Interface 191

8

Fixed Arrays

For a fixed-array parameter, pass the same type and size by reference:

The FORTRAN subroutine,
FixVec.f

 subroutine FixVec (V, Sum)
 integer Sum
 integer V(0:8)
 integer i
 Sum = 0
 do 2 i = 0, 8
 2 Sum = Sum + V(i)
 return
 end

The Pascal main program,
FixVecmain.p

program FixVecmain(output);

type
 VecTyp = array [0..8] of integer;

var
 V: VecTyp := [1, 2, 3, 4, 5, 6, 7, 8, 9];
 Sum: integer;

procedure fixvec(var XV: VecTyp; var XSum: integer);
 external fortran;

begin
 fixvec(V, Sum);
 writeln(Sum: 4)
end. { FixVecmain }

The commands to compile and
execute FixVec.f and
FixVecmain.p

hostname% f77 -c FixVec.f
FixVec.f:

fixvec:
hostname% pc FixVec.o FixVecmain.p -lpfc -lF77
hostname% a.out
 45

192 Pascal 4.0 User’s Guide

8

The univ Arrays

The univ arrays that are in , out , in out , or var parameters pass by
reference.

The FORTRAN subroutine,
UniVec.f

 subroutine UniVec (V, Last, Sum)
 integer V(0:2), Last, Sum, i
 Sum = 0
 do i = 0, Last
 Sum = Sum + V(i)
 end do
 return
 end

The Pascal main program,
UniVecmain.p

program UniVec;

type
 VecTyp = array [0..9] of integer;

procedure univec(var V:univ VecTyp; in Last: integer;
 var Sum: integer); external fortran;

var
 Sum: integer;
 V: array [0..2] of integer;

begin
 V[0] := 7;
 V[1] := 8;
 V[2] := 9;
 univec(V, 2, Sum);
 writeln(Sum)
end. { UniVec }

The FORTRAN–Pascal Interface 193

8

Conformant Arrays

Pascal-conformant array parameters are not compatible if Pascal calls
FORTRAN.

The commands to compile and
execute UniVec.f and
UniVecmain.p

hostname% f77 -c UniVec.f
UniVec.f:

univec:
hostname% pc UniVec.o UniVecmain.p -lpfc -lF77
hostname% a.out

24

194 Pascal 4.0 User’s Guide

8

Records and Structures

Records and structures pass as follows:

The FORTRAN subroutine,
StruChr.f

 subroutine StruChr (vls)
 structure /VarLenStr/
 integer nbytes
 character a*25
 end structure
 record /VarLenStr/ vls
 vls.a(1:5) = 'oyvay'
 vls.nbytes = 5
 return
 end

The Pascal main program,
StruChrmain.p

program StruChrmain;

type
 lenstr =
 record
 nbytes: integer;
 chrstr: array [0..25] of char
 end;

var
 v: lenstr;

procedure struchr(var v: lenstr);
 external fortran;

begin
 struchr(v);
 writeln('v.chrstr = "', v.chrstr, '"');
 writeln('v.nbytes =', v.nbytes: 2)
end. { StruChrmain }

The FORTRAN–Pascal Interface 195

8

Variant Records

You can construct FORTRAN equivalents of variant records. There is some
variation with architecture, and sometimes you need to adjust the alignment.

The commands to compile and
execute StruChr.f and
StruChrmain.p

hostname% f77 -c StruChr.f
StruChr.f:

 struchr:
hostname% pc StruChr.o StruChrmain.p -lpfc -lF77
hostname% a.out
v.chrstr = "oyvay"
v.nbytes = 5

196 Pascal 4.0 User’s Guide

8

Chapter 6, “The C–Pascal Interface,” has an example that matches the
following example.

The FORTRAN subroutine,
VarRec.f . The variable ALIGN
is integer*2 and is needed to
match the Pascal variant record
layout.

 subroutine VarRec (VRec)
 structure /a_var/
 character ch1, ch2
 end structure
 structure /b_var/
 character flag
 end structure
 structure /c_var/
 integer*2 ALIGN
 end structure
 structure /var_part/
 union
 map
 record /a_var/ a_rec
 end map
 map
 record /b_var/ b_rec
 end map
 map
 record /c_var/ c_rec
 end map
 end union
 end structure
 structure /vrnt/
 character tag
 record /var_part/ var_rec
 end structure
 record /vrnt/ VRec
 if (VRec.var_rec.a_rec.ch1 .eq. 'a')
& VRec.var_rec.a_rec.ch2 = 'Z'
 return
 end

The FORTRAN–Pascal Interface 197

8

Value Parameters

With external fortran on the procedure statement, Pascal passes value
parameters as FORTRAN expects them.

The Pascal main program,
VarRecmain.p

program VarRecmain;

type
 vr =
 record
 case tag: char of
 'a': (ch1, ch2: char);
 'b': (flag: boolean);
 'K': (ALIGN: integer)
 end;

var
 Rec: vr;

procedure varrec(var d: vr); external fortran;

begin
 Rec.tag := 'a';
 Rec.ch1 := 'a';
 Rec.ch2 := 'b';
 varrec(Rec);
 writeln(Rec.ch2)
end. { VarRecmain }

The commands to compile and
execute VarRec.f and
VarRecmain.p without –xl

hostname% f77 -c VarRec.f
VarRec.f:

varrec:
hostname% pc VarRec.o VarRecmain.p -lpfc -lF77
hostname% a.out
b

198 Pascal 4.0 User’s Guide

8

Simple Types

With external fortran , the procedure name in the procedure statement
and in the call must be in lowercase, with no underscore (_).

The FORTRAN subroutine,
SimVal.f

 subroutine SimVal(t, f, c, i, d, s, reply)
 logical*1 t, f
 character c
 integer*4 i
 double precision d
 integer*2 s
 integer*4 reply
 reply = 0
 if (t) reply = reply + 1
 if (.not. f) reply = reply + 8
 if (c .eq. 'z') reply = reply + 64
 if (i .eq. 9) reply = reply + 512
 if (d .eq. 9.9) reply = reply + 4096
 if (s .eq. 9) reply = reply + 32768
 return
 end

The FORTRAN–Pascal Interface 199

8

The Pascal main program,
SimValmain.p

program SimVal(output);

var
 t: boolean := true;
 f: boolean := false;
 c: char := 'z';
 i: integer := 9;
 r: real := 9.9;
 s: integer16 := 9;
 args: integer;

procedure simval(t, f: boolean; c: char; i: integer;
 r: real; s: integer16; var reply: integer);
 external fortran;

begin
 simval(t, f, c, i, r, s, args);

writeln('args=', args: 6 oct, ' (If nth digit=1, arg n OK.)')
end. { SimVal }

The commands to compile and
execute SimVal.f and
SimValmain.p

hostname% f77 -c SimVal.f
SimVal.f:

 simval:
hostname% pc SimVal.o SimValmain.p -lpfc -lF77
hostname% a.out
args=111111 (If nth digit=1, arg n OK.)

200 Pascal 4.0 User’s Guide

8

Pointers

Pointers are easy to pass, as shown in the following example:

The FORTRAN subroutine,
PassPtr.f . In the FORTRAN
subroutine, the name is
converted to lowercase.
Uppsercase is ignored.

 subroutine PassPtr (iPtr, dPtr)
 integer i
 double precision d
 pointer (iPtr, i), (dPtr, d)
 i = 9
 d = 9.9
 return
 end

The Pascal main program,
PassPtrmain.p . In the
Pascal program, where it calls
the FORTRAN subroutine, the
name must be in lowercase.

program PassPtrmain;

type
 PtrInt = ^ integer;
 PtrReal = ^ real;

var
 i: integer := 0;
 r: real := 0.0;
 iP: PtrInt;
 rP: PtrReal;

procedure passptr(var xiP: PtrInt; var xrP: PtrReal);
 external fortran;

begin
 iP := addr(i);
 rP := addr(r);
 passptr(iP, rP);
 writeln(i: 2, r: 4: 1)
end. { PassPtrmain }

The FORTRAN–Pascal Interface 201

8

Function Return Values

Function return values match types the same as with parameters, and they
pass in much the same way.

Simple Types

The simple types pass in a straightforward way, as in this example:

The commands to compile and
execute PassPtr.f and
PassPtrmain.p

hostname% f77 -c PassPtr.f
PassPtr.f:

 passptr:
hostname% pc PassPtr.o PassPtrmain.p -lpfc -lF77
hostname% a.out
 9 9.9

The FORTRAN function,
RetReal.f

double precision function retreal (x)
 retreal = x + 1.0
 return
 end

The Pascal main program,
RetRealmain.p

program retrealmain;

var
 r, s: real;

function retreal(x: real): real; external fortran;

begin
 r := 2.0;
 s := retreal(r);
 writeln(r: 4: 1, s: 4: 1)
end. { retrealmain }

202 Pascal 4.0 User’s Guide

8

Type shortreal

You can return a shortreal function value between Pascal and FORTRAN.
Pass it exactly as in the previous example, with the Pascal shortreal type
matching the FORTRAN real type (without -xl).

Routines as Parameters
If the passed procedure is a top-level procedure, write it as follows:

The commands to compile and
execute RetReal.f and
RetRealmain.p

hostname% f77 -c RetReal.f
RetReal.f

 retreal:
hostname% pc RetReal.o RetRealmain.p -lpfc -lF77
hostname% a.out
 2.0 3.0

The FORTRAN subroutine,
PassProc.f

subroutine PassProc (r, s, prcdr)
 real r, s
 external prcdr
 call prcdr (r, s)
 return

end

The FORTRAN–Pascal Interface 203

8

If the procedure is not a top-level procedure, then you do not deal with how to
pass it, because that requires allowing for the static link. A procedure or
function passed as an argument is associated with a static link to its lexical
parent’s activation record.

When an outer block procedure or function is passed as an argument, Pascal
passes a null pointer in the position normally occupied by the static link of the
passed routine. So that procedures and functions can be passed to other
languages as arguments, the static links for all procedure or function
arguments are placed after the end of the conformant array bounds pairs, if
any.

The Pascal main program,
PassProcmain.p

program PassProcmain;

var
 a, b: real;

procedure passproc(var u: real; var v: real;
 procedure p(var r: real; var s: real));
 external fortran;

procedure AddOne(var x: real; var y: real);

begin
 y := x + 1
end; { AddOne }

begin
 a := 8.0;
 b := 0.0;
 passproc(a, b, AddOne);
 writeln(a: 4: 1, b: 4: 1)
end. { PassProcmain }

The commands to compile and
execute PassProc.f and
PassProcmain.p

hostname% f77 -c PassProc.f
PassProc.f

 passproc
hostname% pc PassProc.o PassProcmain.p -lpfc -lF77
hostname% a.out
 8.0 9.0

204 Pascal 4.0 User’s Guide

8

Routines in other languages can be passed to Pascal; a dummy argument must
be passed in the position normally occupied by the static link of the passed
routine. If the passed routine is not a Pascal routine, the argument is used only
as a placeholder.

205

Error Diagnostics 9

This chapter discusses the errors you may come across while writing software
programs with Pascal. It contains the following sections:

Note – Appendix B, “Error Messages,” lists in numerical order all the error
messages generated by Pascal.

Compiler Syntax Errors
Here are some common syntax errors in Pascal programs and the ways that the
compiler handles them.

Illegal Characters

Characters such as @ are not part of Pascal. If they are found in the source
program and are not part of a string constant, a character constant, or a
comment, they are considered to be illegal characters. This error can happen if
you leave off a closing string quotation mark (').

Compiler Syntax Errors page 205

Compiler Semantic Errors page 210

Compiler Panics, I/O Errors page 217

Runtime Errors page 217

206 Pascal 4.0 User’s Guide

9

Most nonprinting characters in your input are also illegal, except in character
constants and character strings. Except for the tab and formfeed characters,
which are used to format the program, nonprinting characters in the input file
print as the character ? in your listing.

String Errors

Encountering an end-of-line after an opening string quotation mark (')
without first encountering the matching closing quote yields the diagnostic:

Unmatched ' for string.

Also, anything enclosed in double quotes (for example, "hello") is treated as
a comment and is, therefore, ignored.

Programs containing # characters (other than in column 1 or in arbitrary-based
integers) can produce this diagnostic, because early implementations of Pascal
use # as a string delimiter. In this version, # is used for #include and
preprocessor directives, and must be in column 1.

Digits in Real Numbers

Pascal requires digits in real numbers before the decimal point. Thus, the
statements b := .075; and c := 05e-10; generate the following
diagnostics in Pascal:

These constructs are also illegal as data input to variables in read statements
whose arguments are variables of type real , single , shortreal , double ,
and longreal .

Mon Feb 13 10:46:44 1995 digerr.p:
 5 b:= .075;
e 18740-------------------^--- Digits required before decimal
point
 6 c:= .05e-10
e 18740-------------------^--- Digits required before decimal
point

Error Diagnostics 207

9

Replacements, Insertions, and Deletions

When Pascal encounters a syntax error in the input text, the compiler invokes
an error recovery procedure. This procedure examines the input text
immediately after the point of error and uses a set of simple corrections to
determine whether or not to allow the analysis to continue. These corrections
involve replacing an input token with a different token or inserting a token.
Most of these changes do not cause fatal syntax errors.

The exception is the insertion of or replacement with a symbol, such as an
identifier or a number; in these cases, the recovery makes no attempt to
determine which identifier or what number should be inserted. Thus, these are
considered fatal syntax errors.

The Pascal program,
synerr.p , which uses ** as an
exponentiation operator

program synerr_example(output);

var i, j are integer;

begin
 for j :* 1 to 20 begin
 write(j);
 i = 2 ** j;
 writeln(i))
 end
end. { synerr_example }

synerr.p produces a fatal
syntax error when you compile it
because Pascal does not have
an exponentiation operator.

hostname% pc synerr.p
Mon Feb 13 10:56:19 1995 synerr.p:
 3 var i, j are integer;
e 18460----------------^--- Replaced identifier with a ':'
 6 for j :* 1 to 20 begin
E 18490-----------------^--- Expected keyword (null)
E 18460-----------------^--- Replaced ':' with a identifier
e 18480----------------------------^--- Inserted keyword do
 8 i = 2 ** j;
e 18480---------------^--- Inserted keyword if
E 18480----------------------^--- Inserted identifier
e 18480-------------------------^--- Inserted keyword then
 9 writeln(i))
e 18450-------------------------^--- Deleted ')'

208 Pascal 4.0 User’s Guide

9

Undefined or Improper Identifiers

If an identifier is encountered in the input but is undeclared, the error recovery
mechanism replaces it with an identifier of the appropriate class.

Further references to this identifier are summarized at the end of the
containing procedure, function, or at the end of the program. This is the case if
the reference occurs in the main program.

Similarly, if you use an identifier in an inappropriate way, for example, if a
type identifier is used in an assignment statement, pc produces a diagnostic
and inserts an identifier of the appropriate class. Further incorrect references
to this identifier are flagged only if they involve incorrect use in a different
way. pc summarizes all incorrect uses in the same way it summarizes uses of
undeclared variables.

Expected Symbols and Malformed Constructs

If none of the corrections mentioned previously appears reasonable, the error
recovery routine examines the input to the left of the point of error to see if
there is only one symbol that can follow this input. If so, the recovery prints a
diagnostic which indicates that the given symbol is expected.

In cases where none of these corrections resolve the problems in the input, the
recovery may issue a diagnostic that indicates “malformed” input. If
necessary, pc can then skip forward in the input to a place where analysis can
continue. This process may cause some errors in the missed text to be skipped.

See this example:

The Pascal program,
synerr2.p . Here output is
misspelled, and a is given a
FORTRAN-style variable
declaration.

program synerr2_example(input,outpu);

integer a(10)

begin
 read(b);
 for c := 1 to 10 do
 a(c) := b * c
end. { synerr2_example }

Error Diagnostics 209

9

Expected and Unexpected End-of-file

If pc finds a complete program, but there is more (noncomment) text in the
input file, then it indicates that an end-of-file is expected. This situation may
occur after a bracketing error, or if too many end s are present in the input. The
message may appear after the recovery says that it Expected '.' because a
period (.) is the symbol that terminates a program.

If severe errors in the input prohibit further processing, pc may produce a
diagnostic message followed by QUIT. Examples include unterminated
comments and lines longer than 1,024 characters.

These are the error messages
you receive when you compile
synerr2.p . On line 6,
parentheses are used for
subscripting (as in FORTRAN),
rather than the square brackets
that are used in Pascal.

The compiler noted that a was
not defined as a procedure
(delimited by parentheses in
Pascal). Since you cannot
assign values to procedure
calls, pc diagnosed a
malformed statement at the
point of assignment.

hostname% pc synerr2.p
Mon Feb 13 11:02:04 1995 synerr2.p:
 3 integer a(10)
e 18480-------^--- Inserted '['
E 18490-----------------^--- Expected identifier
 6 read(b);
E 18420----------------^--- Undefined variable
 7 for c := 1 to 10 do
E 18420---------------^--- Undefined variable
 8 a(c) := b * c
E 18420---------------^--- Undefined procedure
E 15010 line 1 - File output listed in program statement but not
declared
In program synerr2_example:
E 18240 a undefined on line 8
E 18240 b undefined on lines 6 8
E 18240 c undefined on lines 7 8

The Pascal program, mism.p program mismatch_example(output);

begin
 writeln('***');
 { The next line is the last line in the file. }
 writeln

210 Pascal 4.0 User’s Guide

9

Compiler Semantic Errors
The following sections explain the typical formats and terminology used in
Pascal error messages.

Format of the Error Diagnostics

In the example program above, the error diagnostics from the Pascal compiler
include the line number in the text of the program, as well as the text of the
error message. While this number is most often the line where the error
occurred, it can refer to the line number containing a bracketing keyword like
end or until . If so, the diagnostic may refer to the previous statement. This
diagnostic occurs because of the method the compiler uses for sampling line
numbers. The absence of a trailing semicolon (;) in the previous statement
causes the line number corresponding to the end or until to become
associated with the statement.

As Pascal is a free-format language, the line number associations can only be
approximate and may seem arbitrary in some cases.

Incompatible Types

Since Pascal is a strongly-typed language, many type errors can occur, which
are called type clashes by the compiler.

The Pascal compiler distinguishes among the following type classes in its
diagnostics:

When you compile mism.p , the
end-of-file is reached before an
end delimiter

hostname% pc mism.p
E 26020-------^--- Malformed declaration
 15130-------^--- Unexpected end-of-file - QUIT

array integer scalar

boolean pointer string

char real varying

file record

Error Diagnostics 211

9

Thus, if you try to assign an integer value to a char variable, you receive a
diagnostic as follows:

In this case, one error produces a two-line error message. If the same error
occurs more than once, the same explanatory diagnostic is given each time.

The scalar Class

The only class whose meaning is not self-explanatory is scalar . It has a
precise meaning in the Pascal standard where it refers to char , integer , and
boolean types as well as the enumerated types. For the purposes of the
Pascal compiler, scalar in an error message refers to a user-defined
enumerated type, such as color in:

type color = (red, green, blue)

For integers, the more precise denotation integer is used.

Procedure and Function Type Errors

For built-in procedures and functions, two kinds of errors may occur. If a
routine is called with the wrong number of arguments, a message similar to the
following is displayed:

If the type of an argument is wrong, you receive a message similar to the
following:

Mon Feb 13 13:16:20 1995 inchar.p:
E 25190 line 6 - Type clash: integer is incompatible with char
 ... 25560: Type of expression clashed with type of variable in assignment

Mon Feb 13 13:21:26 1995 sin.p:
E 10010 line 6 - Builtin function SIN takes exactly 1 argument

Mon Feb 13 13:31:14 1995 abs.p:
E 10180 line 8 - Argument to ABS must be of type integer or real, not char

212 Pascal 4.0 User’s Guide

9

Scalar Error Messages

Error messages stating that scalar (user-defined) types cannot be read from and
written to files are often difficult to interpret. In fact, if you define:

type color = (red, green, blue)

standard Pascal does not associate these constants with the strings red , green ,
and blue in any way. Pascal adds an extension so that enumerated types can
be read and written; however, if the program is to be portable, you must write
your own routines to perform these functions.

Standard Pascal only allows the reading of characters, integers, and real
numbers from text files, including input (not strings or boolean s). You can
make the following declaration:

file of color

However, the representation is binary rather than as strings, and it is
impossible to define input as other than a text file.

Expression Diagnostics

The diagnostics for semantically ill-formed expressions are explicit, as the
following program shows. This program, expr.p , is admittedly far-fetched,
but illustrates that the error messages are clear enough so you can easily
determine the problem in the expressions.

Error Diagnostics 213

9

This program generates the following error messages:

program expr_example(output);

var
 a: set of char;
 b: Boolean;
 c: (red, green, blue);
 p: ^ integer;
 A: alfa;
 B: packed array [1..5] of char;

begin
 b := true;
 c := red;
 new(p);
 a := [];
 A := 'Hello, yellow';
 b := a and b;
 a := a * 3;
 if input < 2 then writeln('boo');
 if p <= 2 then writeln('sure nuff');
 if A = B then writeln('same');
 if c = true then writeln('hue''s and color''s')
end. { expr_example }

hostname% pc expr.p
Mon Feb 13 13:36:51 1995 expr.p:
E 13050 line 16 - Constant string too long
E 20070 line 17 - Left operand of and must be Boolean, not set
E 25550 line 18 - expression has invalid type
E 20030 line 18 - Cannot mix sets with integers and reals as operands of *
E 20240 line 19 - files may not participate in comparisons
E 20230 line 20 - pointers and integers cannot be compared - operator was <=
E 20220 line 21 - Strings not same length in = comparison
E 20230 line 22 - scalars and Booleans cannot be compared - operator was =

214 Pascal 4.0 User’s Guide

9

Type Equivalence

The Pascal compiler produces several diagnostics that generate the following
message:

non-equivalent types

In general, Pascal considers types to be the same only if they derive from the
same type identifier. Therefore, the following two variables have different
types, even though the types look the same and have the same characteristics.

The assignment:

x := y

produces the following diagnostic messages:

x : record
a: integer;
b: char;

end;
y : record

a: integer;
b: char;

end;

Mon Feb 13 14:22:46 1995 inchar.p:
E 25170 line 12 - Type clash: non-identical record types
 ... 25560: Type of expression clashed with type of variable in assignment

Error Diagnostics 215

9

To make the assignment statement work, you must declare a type and use it to
declare the variables, as follows:

Alternatively, you could use the declaration:

The assignment statement then works.

Unreachable Statements

Pascal flags unreachable statements. Such statements usually correspond to
errors in the program logic, as shown in the following example:

type
r = record

a: integer;
b: char;

end;
var

x: r;
y: r;

x, y : record
a: integer;
b: char;

end;

The Pascal program,
unreached.p

program unreached_example(output);

label
 1;

begin
 goto 1;
 writeln('Unreachable.');
 1:
 writeln('Reached this.');
end. { unreached_example }

216 Pascal 4.0 User’s Guide

9

A statement is considered to be reachable if there is a potential path of control,
even if it cannot be taken. Thus, no diagnostic is produced for the statement:

The goto Statement

Pascal detects and produces an error message about goto statements that
transfer control into structured statements—for example, for and while . It
does not allow such jumps, nor does it allow branching from the then part of
an if statement into the else part. Such checks are made only within the
body of a single procedure or function.

Uninitialized Variables

Pascal does not necessarily set variables to an initial value unless you explicitly
request that with the –Z option. The exception is static variables, which are
guaranteed to be initialized with zero values.

Because variable use is not tracked across separate compilation units, pc does
nothing about uninitialized or unused variables in global scope, that is, in the
main program. However, pc checks variables with local scope—those declared
in procedures and functions, to make sure they are initialized before being
used. pc flags uninitialized variables with a warning message.

Unused Variables, Constants, Types, Labels, and Routines

If you declare a variable, constant, type, procedure, or function in local scope
but never use it, Pascal gives you a warning message. It does not do this for
items declared in global scope because you can use the items in a separately
compiled unit.

This error message is
generated when you compile
unreached.p .

hostname% pc unreached.p
Tue Feb 14 14:21:03 1995 unreached.p:
w 18630 line 8 - Unreachable statement

if false then
writeln('Impossible!')

Error Diagnostics 217

9

If you declare a label but never use it, Pascal gives you a warning. This is true
even for a label declared in global scope.

Compiler Panics, I/O Errors
One class of error that rarely occurs, but which causes termination of all
processing when it does, is a panic.

A panic indicates a compiler-detected internal inconsistency. A typical panic
message follows:

pc0 internal error line=110 yyline=109

If you receive such a message, compilation is terminated. Save a copy of your
program, then contact Sun Customer Support. If you were making changes to
an existing program when the problem occurred, you may be able to work
around the problem by determining which change caused the internal error
and making a different change or error correction to your program.

The only other error that aborts compilation when no source errors are
detected is running out of memory. Most tables in Pascal, with the exception
of the parse stack, are dynamically allocated, and can grow to take up a good
deal of process space. In general, you can get around this problem with large
programs by using the separate compilation facility. See Chapter 5, “Separate
Compilation,” for details.

If you receive an out of space message during translation of a large
procedure or function, or one containing a large number of string constants,
either break the procedure or function into smaller pieces or increase the
maximum data segment size using the limit command of csh (1).

Runtime Errors
When Pascal detects an error in a program during runtime, it prints an error
message and aborts the program, producing a core image.

 Following is a list of runtime errors that Pascal generates:

<filename> : Attempt to read from a file open for writing

<filename> : Attempt to write to a file open for reading

218 Pascal 4.0 User’s Guide

9

<filename> : Bad data found on enumerated read

<filename> : Bad data found on integer read

<filename> : Bad data found on real read

<filename> : Bad data found on string read

<filename> : Bad data found on varying of char read

<filename> : Cannot close file

<filename> : Could not create file

<filename> : Could not open file

<filename> : Could not remove file

<filename> : Could not reset file

<filename> : Could not seek file

<filename> : Could not write to file

<filename> : File name too long (maximum of < number> exceeded

<filename> : File table overflow (maximum of < number>
exceeded)

<filename> : Line limit exceeded

<filename> : Non-positive format widths are non-standard

<filename> : Overflow on integer read

<filename> : Tried to read past end of file

<filename> : eoln is undefined when eof is true

Argument < number> is out of the domain of atan

Error Diagnostics 219

9

Argument to argv of < number> is out of range

Assertion #< number> failed: < assertion message>

Cannot close null file

Cannot compute cos(< number>)

Cannot compute sin(< number>)

Cannot open null file

Enumerated type value of < number> is out of range on output

Floating point division by zero

Floating point operand is signaling Not-A-Number

Floating point overflow

Floating point underflow

Illegal argument of < number> to trunc

Inexact floating point result

Integer divide by zero

Integer overflow

Internal error in enumerated type read

Invalid floating point operand

Label of < number> not found in case

Negative argument of < number> to sqrt

Non-positive argument of < number> to ln

Overflow/Subrange/Array Subscript Error

220 Pascal 4.0 User’s Guide

9

Pointer value (< number>) out of legal range

Ran out of memory

Range lower bound of < number> out of set bounds

Range upper bound of < number> out of set bounds

Reference to an inactive file

Second operand to MOD (< number>) must be greater than zero

Statement count limit of < number> exceeded

Subrange or array subscript is out of range

Sun FPA not enabled

Unknown SIGFPE code

Unordered floating point comparison

Value of < number> out of set bounds

Varying length string index < number> is out of range

exp(< number>) yields a result that is out of the range of
reals

i = < number>: Bad i to pack(a,i,z)

i = < number>: Bad i to unpack(z,a,i)

pack(a,i,z): z has < number> more elements than a

substring outside of bounds of string

unpack(z,a,i): z has < number> more elements than a

221

The XView Toolkit 10

This chapter introduces the XView programmer’s toolkit, a part of the XView
application programmer’s interface (API). It assumes you are familiar with
XView windows as a user, and introduces XView from a programmer’s point
of view. For details, see the XView Programming Manual by Dan Heller,
O’Reilly & Associates, Inc., 1990.

The sections in this chapter are:

Note – Support for the XView toolkit will not be provided in future releases of
Pascal.

Overview
The XView API is an object-oriented, server-based, user-interface toolkit for the
X Window System Version 11 (X11). It is designed and documented to help
programmers manipulate XView windows and other XView objects. This
chapter focuses on using it with Pascal.

Overview page 221

Pascal Interface page 223

Conversion of C to Pascal page 227

Sample Program page 230

222 Pascal 4.0 User’s Guide

10

Tools

This kit is a collection of functions. The runtime system is based on each
application having access to a server-based Notifier, which distributes input to
the appropriate window, and a Window Manager, which manages overlapping
windows. There is also a Selection Service for exchanging data between
windows (in the same or different processes).

Objects

XView is an object-oriented system. XView applications create and manipulate
XView objects that are associated with XView packages. Objects in the same
package share common properties. The major objects are windows, icons,
cursors, menus, scrollbars, and frames. A frame contains non-overlapping
subwindows within its borders. You manipulate an object by passing a unique
identifier or handle for that object to procedures associated with that object.

Object-Oriented Programming

Traditional programs are made up of procedures. When you need to operate
on some data, you pass the data to a procedure. This style of programming
can be referred to as procedure-oriented programming.

In object-oriented programming, the data are organized into objects, which are
similar to records in that an object can contain data fields of different types. In
addition to data, though, objects also have associated procedures, called
methods. The methods of an object generally perform all operations that can
be performed on the data of the object. When you need to operate on the data
in an object, you direct the object to do the operation. This is referred to as
sending a message to the object, and is similar to calling a procedure.

Each object is an instance of a given class. A class is much like a type in that it
defines a kind of object. Creating an instance of a given class is much like
declaring a variable of a given type, since creating an instance of a class creates
an object that has the properties and characteristics defined for its class.

Classes are different from types in that a class can inherit data fields and
methods from another class. In fact, you always define a new class by
declaring it a subclass of some class. The new class is called a child or
descendant class; the old class is called a superclass, parent, or ancestor class.
A descendant can itself have descendants. Thus, classes form a tree structure,

The XView Toolkit 223

10

with the root being the class from which all others are descended. In the
XView toolkit, the root is the class Generic Object, which has no data fields and
no methods. Each descendant of Generic Object is specialized in some way,
perhaps with additional data fields or methods.

What gives object orientation its power is that the inherited methods of a
subclass can be reimplemented so that they take actions suited to the subclass.

For example, consider a system that has three classes: Drawable Object,
Window, and Icon. Window and Icon are subclasses of Drawable Object. This
setup creates the hierarchical relationship illustrated in Figure 10-1.

Figure 10-1 A Sample Class Hierarchy

Suppose that Drawable Object has a method that draws the object. Window
and Icon inherit that method, but each implements it in a different way.
Window defines a Draw method that draws windows; Icon defines a Draw
method that draws icons.

When you write your program, you can send a message to an object directing
it to draw itself without knowing whether, at runtime, the object is an icon or a
window. This method works because both Window and Icon are descendants
of Drawable Object. At runtime, the object that receives the method draws
itself using its class implementation of the Draw method.

Pascal Interface
To write XView applications in Pascal, you use special libraries, modules files,
object handles, and standard procedures.

Drawable
Object

IconWindow

224 Pascal 4.0 User’s Guide

10

Compiling with Libraries

Most XView procedures you call are in the libraries pxview , xview , and X11.
To compile an XView program, link the libraries, in order. For example:

hostname% pc my_pascal.p -lpxview -lxview -lolgx -lX11

Header Files

The header files define the necessary data types, constants, and external
procedures necessary to write programs using the XView interface with Pascal.

Names

The names of the header file are the same as the XView C language header files
with the .h extension changed to _p.h . For example, the Pascal header file
corresponding to the XView file panel.h is named panel_p.h . Other header
files are canvas_p.h, text_p.h , and so on.

In addition to the header files corresponding to the XView headers, there is an
another one, stddefs_p.h .

This file defines some basic types that are used by most of the other Pascal
XView header files, and is included by the header files that need it.

Usage

To use header files with Pascal, put in include lines for any other header files
you need.

Attribute Procedures

Each class of objects has its own set of attributes. Each attribute has a
predefined (default) value. For example, for the class of scrollbars, there is a
width and a color.

The standard C interface to XView defines two routines, xv_get() and
xv_set() , which get and set attributes of XView objects. These routines take
an arbitrary number and type of parameters and return various types,
depending on its arguments.

The XView Toolkit 225

10

Instead of these routines, the Pascal interface to XView defines a separate
routine to get and set each attribute.

• set —The routine to set an attribute is called set_ attrname. Each set
routine is a procedure, and takes as its first argument the object for which
the attribute is being set. The second argument is the value of the attribute.

• get —The routine to get the value of an attribute is called get_ attrname.
Each get routine is a function, and takes an XView object as the first
argument. It returns the value of the attribute requested.

For example:

These routines are defined in the header file, attrgetset_p.h .

Attribute Lists

Some of the XView C routines can optionally take extra arguments that are lists
of attributes and values. The extra arguments vary in number and type. You
must pass a 0 to the last argument of these routines.

Since Pascal does not support variable length argument lists, the Pascal
definition has a single argument.

Instead, special versions of these routines are provided which take as a last
argument an argument of type Attr_avlist . This type is a pointer to an
array of attributes and values. The special routines are:

xv_init_l() ,
xv_create_l() ,
xv_find_l() ,
selection_ask_l() ,
selection_init_request_l() .

set_WIN_SHOW (frame, true);

width := get_CANVAS_WIDTH (canvas);

226 Pascal 4.0 User’s Guide

10

Example calls are:

The lists for Attr_avlist are created by functions that have the following
names:

attr_create_list_ n()

attr_create_list_ ns()

• The n indicates the number of arguments the routine accepts.

• The number of arguments can be 1-16.

• The routines ending in s return a pointer to a static attribute-value array,
which is reused with each call to the static list routines.

• The versions without the s return a dynamically allocated list, which should
be passed to xv_destroy() when you are finished with it.

Handles

When you create an XView object, xv_create() returns a handle for that
object. You pass this handle to the appropriate procedure for manipulating the
object.

Data Types

Each XView object has its own specific data type. The name of an object’s data
type always starts with a capital letter. For example, the data type for a
scrollbar is Scrollbar . The standard list of these types is in the header files.

Here, mymenu is an object of
type XV_object.

mymenu := xv_create (NULL, MENU, 0);
ncols := get_MENU_NCOLS (mymenu);
set_MENU_NITEMS (mymenu, items);
 xv_find_l (mymenu, MENU,

attr_create_list_2s (MENU_DEFAULT,4));
xv_destroy (mymenu);

The XView Toolkit 227

10

Coding Fragment

Here is an example that illustrates the style of programming with the XView
interface in Pascal. This program:

• Creates a vertical scrollbar with a view length of 100 pixels
• Changes the view length to 200 pixels
• Destroys the scrollbar

In this example:

• bar is declared to be of type Scrollbar .
• xv_create() and xv_create_l() are invoked as functions.
• set SCROLLBAR_VIEW_LENGTH () is invoked as a procedure.
• xv_destroy() is invoked as a procedure.

Conversion of C to Pascal
Here is an example of a problem that you may encounter when converting C to
Pascal. It recommends some changes that you can make to work around the
problem.

An Example

The Problem—Besides the six standard generic procedures, there are
approximately 80 other procedures, plus hundreds of attributes. These are all
documented in the XView Programming Manual. The problem is that all of the
coding is in C.

var bar, pi: Scrollbar;

begin
bar := xv_create (0, SCROLLBAR, 0);
pi := xv_create_l (0, SCROLLBAR,
 attr_create_list_4s (SCROLLBAR_VIEW_LENGTH, 100,
 SCROLLBAR_DIRECTION, SCROLLBAR_VERTICAL));

set_SCROLLBAR_VIEW_LENGTH(bar, 200);
xv_destroy (bar);

228 Pascal 4.0 User’s Guide

10

The Straightforward Part—You can use the following items of information as
you find them in the manual, with no change:

• The XView procedure names
• The XView object names
• The XView object data types (except Boolean , see the following section)

The More Complex Parts—You must make the following changes:

• Any elementary C data type used must be converted to the corresponding
Pascal data type.

• Any C procedure that returns something must be invoked in Pascal as a
function; otherwise, it must be invoked as a procedure.

• The XView type Boolean must be converted to the Pascal type, boolean .

Table 10-1 shows you how to convert C declarations to Pascal.

1. Defined in stddefs_p.h

Table 10-1 C Declarations to Pascal Declarations

C Pascal

int integer , subrange, or numeric constant

unsigned unsigned , subrange, or numeric constant1

short integer16 , subrange, or numeric constant

unsigned short unsigned16 , subrange, or nonnegative numeric constant

char char (or single-letter string literal for special definition modules)

float shortreal , longreal , or real constant (always passed
as LONGREAL)

double real or real constant

any pointer type pointer type

any enum type unsigned type

any struct type record type of corresponding size and layout

char * array of char or string literal

other array types array type of corresponding size

The XView Toolkit 229

10

Sample Translation of an XView Function to Pascal

In the section, “Summary of Procedures and Macros,” in the XView
Programming Manual, is the following entry:

If you translate the entry to Pascal, it means:

• Leave the object data type, Textsw , as is.

• Since the function returns the number of characters inserted, invoke it as an
integer function.

texsw_insert()
Inserts characters in buf into textsw at the current
insertion point. The number of characters actually
inserted is returned. This will equal buf_len unless
there was a memory allocation failure. If there was
a failure, it will return 0.

Textsw_index
textsw_insert(textsw, buf, buf_len)

Textsw textsw;
char *buf;
int buf_len;

...

var
textsw: Textsw ;
buf: array[0..3] of char ;
buf_len: integer;
N:Textsw_index;

begin
...
N := textsw_insert (textsw, buf, buf_len) ;
end.

230 Pascal 4.0 User’s Guide

10

Sample Program
The following program, xview.p , makes a window:

To compile xview.p and link in the necessary libraries, use the following
command-line. Replace local_library_path with the path for the Pascal XView
libraries on your system.

hostname% pc -I local_library_path xview.p -L$OPENWINHOME/lib \
-lpxview -lxview -lolgx -lX11

Now run the executable file:

hostname% a.out

Soon after you run the executable file, the window opens as a single frame,
with the string Hello, World! in the frame header.

program hello(output);

#include "stddefs_p.h"
#include "attrgetset_p.h"

var
 base_frame :Frame;
 base_panel :Panel;
 message :Xv_panel_or_item_ptr;
 text :string;

begin
 text := 'Hello, World! ';

 xv_init(0);

 base_frame := xv_create(nil, FRAME, 0);
 base_panel := xv_create(base_frame, PANEL, 0);
 message := xv_create(panel, PANEL_MESSAGE, 0);
 set_PANEL_LABEL_STRING(message, text);

 window_main_loop(base_frame);

end. {hello}

The XView Toolkit 231

10

Menu Demo Program
Here is a more complicated program, menu_demo.p , that makes a window
and a panel with a menu button. The choices displayed are: Option 1, Option2,
and Option 3.

program MenuDemo(output);

#include "stddefs_p.h"
#include "attrgetset_p.h"

var
 base_frame : Frame;
 base_panel : Panel;
 button : Panel_button_item;
 menu : Menu;

 frame_label : string;
 button_label : string;
 option1 : Cstringp;
 option2 : Cstringp;
 option3 : Cstringp;

procedure menu_proc(menu_: Menu; menu_item: Menu_item);
var
 menu_string : Cstringp;
begin
 menu_string := get_MENU_STRING(menu_item);
 set_FRAME_RIGHT_FOOTER(base_frame, menu_string^);
end;

begin
 frame_label := 'FRAME LABEL';
 button_label := 'BUTTON LABEL';
 new(option1); option1^ := 'OPTION 1';
 new(option2); option2^ := 'OPTION 2';
 new(option3); option3^ := 'OPTION 3';

 xv_init(0);

232 Pascal 4.0 User’s Guide

10

To compile menu_demo.p and link in the necessary libraries, use the following
command-line:

hostname% pc menu_demo.p -Ipascal_xview_include_path \
-Lpascal_xview_include_path -lpxview -lxview -lolgx -lX11

Now run the executable file:

hostname% a.out

 base_frame := xv_create(nil, FRAME, 0);
 set_FRAME_LABEL(base_frame, frame_label);
 set_FRAME_SHOW_FOOTER(base_frame, TRUE);

 base_panel := xv_create(base_frame, PANEL, 0);

 menu := xv_create(nil, MENU, 0);
 set_MENU_STRINGS_3(menu, option1, option2, option3);
 set_MENU_NOTIFY_PROC(menu, addr(menu_proc));

 button := xv_create(base_panel, PANEL_BUTTON, 0);
 set_PANEL_LABEL_WIDTH(button, 200);
 set_PANEL_LABEL_STRING(button, button_label);
 set_PANEL_ITEM_MENU(button, menu);

 window_main_loop(base_frame);
end. {menu_demo}

233

Math Libraries 11

This chapter describes how to use the libm and libsunmath functions in
Pascal programs. The math libraries are always accessible from a Pascal
program because the Pascal compiler driver pc calls ld , the linker and loader,
with the -lsunmath -lm options. If you compile Pascal program with the -v
option, it prints the command-line used to call each of the compilation passes.

For convenience, Pascal supports special Pascal header files, math_p.h and
sunmath_p.h , which contain prototypes of math functions, procedures, and
some useful constants. The math_p.h file refers to sunmath_p.h by an
#include directive.

This chapter contains the following sections:

Contents of the Math Libraries page 234

libm Functions page 235

IEEE Support Functions page 236

SPARC Libraries page 238

Arithmetic Exceptions page 239

Math Library Exception-Handling Function: matherr() page 240

libsunmath Support for IEEE Modes and Exceptions page 242

234 Pascal 4.0 User’s Guide

11

Contents of the Math Libraries
Altogether, there are three math libraries:

• libm.a —A set of functions required by the various standards to which the
operating system conforms

• libm.so —(Solaris 2.x only) The shared version of libm.a

• libsunmath.a —A set of functions not required by the standards, but are
of common use

Table 11-1 lists the contents of the math libraries.

Table 11-1 Contents of Math Libraries

Algebraic functions

Rootsm+

Euclidean distancem+, s

Transcendental functions

Elementary transcendental functions

Trigonometric functions

Trigonometric functions of radian argumentsm+

Trigonometric functions of degree arguments s

Trigonometric functions (scaled in Pi)s

Trigonometric functions (with double precision Pi) s

Hyperbolic functionsm+

Exponential, logarithm, powerm+, s

Financial functionss

Higher transcendental functions

Besselm+

Gammam+

Error functionm+

Integral rounding functionsm+, s

Math Libraries 235

11

Legend:
m Functions available in bundled libm
m+ Functions available in bundled libm and as single-precision version only

in libsunmath
s Functions available in unbundled libm (libsunmath)

libm Functions
Most numerical functions are available in double- and single-precision version.
In general, the names of the single-precision version are formed by adding f to
the names of the double-precision version.

Random number generators

Additive pseudo-random generatorss

Linear pseudo-random generatorss

Random number shufflerss

IEEE support functions

IEEE functionsm+

IEEE testm+

IEEE valuess

IEEE suns

Control flagss

Floating-point trap handling

IEEE handlings

Handling for specific SIGFPE codes (in libc)

Error handling functionm

Data conversions

BSD miscellaneouss

Base conversion routines (in libc)

FORTRAN intrinsic functionss

Table 11-1 Contents of Math Libraries (Continued)

236 Pascal 4.0 User’s Guide

11

The following Pascal program is an example of how to use math functions.

IEEE Support Functions
This section describes the IEEE support functions, including
ieee_functions() , ieee_values() , and ieeee_retrospective() .

program TestLibm(output);
#include <math_p.h>

var
 d0,d1,d2: double;
 f0,f1,f2: single;

begin
 d0 := 0.0; d1 := 1.0; d2 := 2.0;
 f0 := 0.0; f1 := 1.0; f2 := 2.0;

 writeln('Trigonometric functions');

 writeln(sin(d0));
 writeln(sinf(f0));

 sincos(M_PI_2, d1, d2);
 writeln(d1, d2);
 sincosf(M_PI_2, f1, f2);
 writeln(f1, f2);

 writeln('Exponential, logarithm, power');

 writeln(exp(d1));
 writeln(log(d1));
 writeln(pow(d1, d1));
 writeln(expf(f1));
 writeln(logf(f1));
 writeln(powf(f1, f1));
end.

Math Libraries 237

11

ieee_functions()

The functions described in ieee_functions (3M) provide capabilities either
required by the IEEE standard or recommended in its appendix. Example:

ieee_values()

IEEE values, such as infinity, NaN, minimum and maximum positive floating-
point numbers, are provided by special functions described in the
ieee_values (3M) man page. Another example follows.

program TestIEEEFunctions(output);

#include "math_p.h"

var
 d1: double := 1.0;
 d2: double := 2.0;
 i1: integer := 1;

begin
 writeln('IEEE functions');

 writeln(ilogb(d1));
 writeln(isnan(d1));
 writeln(copysign(d1, d2));
 writeln(fabs(d1));
 writeln(fmod(d1, d1));
 writeln(nextafter(d1, d1));
 writeln(remainder(d1, d1));
 writeln(scalbn(d1, i1));
end.

238 Pascal 4.0 User’s Guide

11

ieee_retrospective()

The libm function ieee_retrospective() prints to stderr information
about unrequited exceptions and nonstandard IEEE modes. Pascal programs
call ieee_retrospective() on exit by default.

SPARC Libraries
The libm and libsunmath libraries also contain:

• Argument reduction functions, using infinitely precise Pi and trigonometric
functions scaled in Pi

• Data conversion routines for converting floating-point data between IEEE
and non-IEEE formats

• Random number generators

There are two facilities for generating uniform pseudo-random numbers,
addrans (3M) and lcrans (3M). addrans is an additive random number
generator; lcrans is a linear congruential random number generator. In
addition, shufrans (3M) shuffles a set of pseudo-random numbers to provide
even more randomness for applications that need it.

program TestIEEEValues(output);

#include "math_p.h"

var
 l0: integer32 := 0;
begin
 writeln('IEEE values');

 writeln(infinity);
 writeln(signaling_nan(l0));
 writeln(quiet_nan(l0));
 writeln(max_normal);
 writeln(max_subnormal);
 writeln(min_normal);
 writeln(min_subnormal);
end.

Math Libraries 239

11

Arithmetic Exceptions
An arithmetic exception arises when an attempted atomic arithmetic operation
does not produce an acceptable result. The meaning of the terms “atomic” and
“acceptable” may vary, depending on the context.

Following are the five types of IEEE floating-point exceptions:

• Invalid operation—An operand is invalid for the operation about to be
performed.

program TestRandom(output);

#include "math_p.h"

var
 n: integer := 100;
 i: integer;
 ilb, { Lower bound }
 iub: integer; { Upper bound }
 ia: array [1..100] of integer;

begin
 writeln('Integer linear congruential random number generator');
 ilb := I_LCRAN_LB;
 iub := I_LCRAN_UB;
 i_lcrans_(ia, n, ilb, iub);
 for i := 1 to n do
 writeln(ia[i]);

 writeln('Integer additive random number generator');
 ilb := minint;
 iub := maxint;
 i_addrans_(ia, n, ilb, iub);
 for i := 1 to n do
 writeln(ia[i]);

 writeln('Integer random number shufflers');
 i_shufrans_(ia, n, ilb, iub);
 for i := 1 to n do
 writeln(ia[i]);
end.

240 Pascal 4.0 User’s Guide

11

• Division by zero—The divisor is zero, and the dividend is a finite non-zero
number; or, more generally, an exact infinite result is delivered by an
operation on finite operands.

• Overflow—The correctly rounded result is larger than the largest number in
the required precision.

• Underflow—The number is too small, or precision is lost, and no signal
handler is established for underflow.

• Inexact—The rounded result of a valid operation is different from the
infinitely precise result. This exception occurs whenever there is untrapped
overflow or untrapped underflow.

Math Library Exception-Handling Function: matherr()

Some libm functions are specified to call matherr() when an exception is
detected. You can redefine matherr() by including a function named
matherr() in the program. When an exception occurs, a pointer to the
exception structure, exc , is passed to the user-supplied matherr() function.
This structure, defined in the math_p.h header file, is as follows:

The element kind is an integer constant that describes the type of exception
that occurred, and is one of the following constants. These constants are
defined in the header file.

type
 exception = record
 kind: integer;
 name: ^string;
 arg1: double;
 arg2: double;
 retval: double;
 end;

Math Libraries 241

11

If your matherr() function returns a non-zero result, no exception message is
printed, and errno is not set.

DOMAIN Argument domain exception

SING Argument singularity

OVERFLOW Overflow range exception

UNDERFLOW Underflow range exception

TLOSS Total loss of significance

PLOSS Partial loss of significance

program TestMatherr(output);

#include <math_p.h>

function matherr(var info: exception): integer;
begin
 case info.kind of
 DOMAIN: begin
 { change sqrt to return sqrt(-arg1), not NaN }
 if substr(info.name^, 1, length('sqrt')) = 'sqrt' then begin
 info.retval := sqrt(-info.arg1);
 matherr := 1; { No exception message will be printed }
 end;
 end;
 otherwise
 matherr := 0;
 end;
end;

begin
 writeln('Error handling function');
 writeln('sqrt(-1)= ', sqrt(-1));
end.

242 Pascal 4.0 User’s Guide

11

libsunmath Support for IEEE Modes and Exceptions
ieee_handler() is used primarily to establish a signal handler for a
particular floating-point exception or group of exceptions.

The syntax of this function is described in the ieee_handler (3M) man page.

This following Pascal program demonstrates how to abort on division by zero.

ieee_flags() is the recommended interface to:

• Query or set rounding direction mode
• Query or set rounding precision mode
• Examine, clear, or set accrued exception flags

program TestIEEEHandler(output);

#include <math_p.h>

procedure DivisionHandler(
 sig: integer;
 sip: univ_ptr;
 uap: univ_ptr);
begin
 writeln('Bad data - division by zero.');
end; { DivisionHandler }

var
 FpAction, FpException: string;
 Zero: integer := 0;

begin
 FpAction := 'set';
 FpException := 'division';

 writeln(ieee_handler(FpAction, FpException,
 addr(DivisionHandler)));
 writeln('1/0 = ', 1 / Zero);

 writeln(ieee_handler(FpAction, FpException, SIGFPE_DEFAULT));
 writeln('1/0 = ', 1 / Zero);
end.

Math Libraries 243

11

The syntax of this function is described in the ieee_flags (3M) man page.

If an exception is raised at any time during program execution, then its flag is
set, unless it is explicitly cleared. Clearing accrued exceptions is done by a call,
as shown in the following Pascal program.

program TestIEEEFlags(output);

#include "math_p.h"

var
 FlAction, FlMode, FlIn: string;
 FlOut: string_pointer;
 Zero: integer := 0;

begin
 writeln(sqr(-1)); { Invalid operation }
 writeln(1 / Zero); { Division by zero }
 writeln(exp(709.8)); { Overflow }
 writeln(exp(-708.5)); { Underflow }
 writeln(log(1.1)); { Inexact }

 FlAction := 'clear';
 FlMode := 'exception';
 FlIn := 'all';
 writeln(ieee_flags(FlAction, FlMode, FlIn, FlOut));
end.

244 Pascal 4.0 User’s Guide

11

245

Pascal Preprocessor A

This appendix describes the preprocessors, cpp (1) and cppas .

cpp

cpp (1) is the C language preprocessor. Pascal runs your source program
through cpp (1) when you compile it without the –xl option. For a complete
description of cpp (1), see the Solaris documentation.

cppas

The cppas preprocessor handles the Pascal conditional variables and compiler
directives. You call cppas using the –xl option.

Conditional Variables

A conditional variable is defined when it appears in a %var directive;
otherwise, it is undefined. In addition, we predefine:

These variables are not predefined when you use -s0 , -s1 , -V0 , or -V1 .

__sun __SVR4 sparc

__sparc __SUNPRO_PC=0x400 unix

__unix sun

246 Pascal 4.0 User’s Guide

A

A defined conditional variable is enabled (true) when it appears in either the
%enable directive or in the –config option; otherwise, it is disabled (false),
as in:

The following section describes %var and %enable . Programs that contain
conditional variables must be compiled with the –xl option.

Compiler Directives

A directive indicates some action for the compiler to take. You can use a
directive anywhere in your program.

Each directive consists of a percent sign (%) followed by the directive name.
Programs that contain compiler directives must be compiled with the –xl
option.

Table A-1 summarizes the compiler directives.

%var one two
%enable two

Table A-1 cppas Compiler Directives

Compiler
Directive Description

%config Sets a special predefined conditional variable with a value of either
true or false .

%debug Instructs pc to compile this line of code when you use the -cond
compiler directive.

%else If expression in %if expression %then is false , the compiler skips over
the %then part and executes the %else part instead.

%elseif If expression in %if expression %then is false , the compiler skips over
the %then part and executes the %elseif part instead. Similar to
%els e.

%elseifdef If expression in %ifdef expression %then is false, the compiler skips over
the %then part and executes the %elseifdef part instead.

%enable Sets a conditional variable to true .

%endif Indicates the end of an %if or %ifdef directive.

%error Prints a string on the standard output and treats it as an error.

Pascal Preprocessor 247

A

The rest of this appendix contains detailed descriptions and examples of each
directive.

The %config Directive
The %config directive is a predefined conditional variable with a value of
either true or false .

Syntax
%config

Comments
%config is true when you compile your program with the -config option;
otherwise, %config is false .

Use %config in an %if , %ifdef , %elseif , or %elseifdef directive to catch
any undefined values specified with -config . Do not define %config in the
%var directive.

%exit Stops processing the current Pascal source file.

%if When the compiler encounters a %if expression %then directive, it
evaluates expression. If expression is true , pc executes the statements
after %then . If expression is false , pc skips over %then .

%ifdef Determines whether or not you previously defined a conditional
variable in a %var directive.

%include Inserts the lines from the specified file into the input stream.

%list Enables a listing of the program.

%nolist Disables the program listing.

%slibrary Inserts the lines from the specified file into the input stream. Same as
%include .

%var Defines conditional variables.

%warning Prints a warning string on the standard output.

Table A-1 cppas Compiler Directives (Continued)

Compiler
Directive Description

248 Pascal 4.0 User’s Guide

A

Example

The Pascal program,
config.p , which defines the
conditional variables one and
two

program config_example(output);

{ This program demonstrates the use of the
 %config compiler directive. }

var
 a: integer := maxint;
 b: integer := minint;

%var one two

begin
 writeln('Begin program.');
 %if one %then
 writeln('One is defined as ', a:2, '.');
 %elseif two %then
 writeln('Two is defined as ', b:2, '.');
 %elseif %config %then
 writeln('Nothing is defined.');
 %endif
 writeln('End program.')
end. { config_example }

The output when you compile
config.p without the
-config option

hostname% pc -xl config.p
hostname% a.out
Begin program.
End program.

The output when you define the
variable one

hostname% pc -xl -config one config.p
hostname% a.out
Begin program.
One is defined as 32767.
End program.

Pascal Preprocessor 249

A

The %debug Directive
The %debug directive instructs pc to compile this line of code when you use
the –cond compiler directive.

Syntax
%debug;

Comments
The %debug directive works in conjunction with the –cond compiler option.
–cond causes pc to compile the lines in your program that begin with
%debug. Without –cond , pc treats lines with %debug as comments.

The output when you define two hostname% p c -xl -config two config.p
hostname% a.out
Begin program.
Two is defined as -32768.
End program.

The output when you define foo hostname% pc -xl -config foo config.p
Fri Mar 3 15:22 1995 config.p

Error: –CONFIG command argument foo was never declared.
Compilation failed

250 Pascal 4.0 User’s Guide

A

Example

The %else Directive
The %else directive provides an alternative action to the %if directive.

Syntax
%if expression %then
 .
 .
%else
 .
 .
%endif

The Pascal program, debug.p program debug_example(output);

{ This program demonstrates the use of the
 %debug compiler directive. }

begin
 writeln ('Hello, how are you?');
 %debug; writeln ('Fine, thank you.');
end. { debug example }

The output when you compile
debug.p without the –cond
option

hostname% pc -xl debug.p
hostname% a.out
Hello, how are you?

The output when you use –cond hostname% pc -xl –cond debug.p
hostname% a.out
Hello, how are you?
Fine, thank you.

Pascal Preprocessor 251

A

Example

The %elseif Directive
The %elseif directive provides an alternative action to the %if directive.

Syntax
%if expression %then
 .
 .
%elseif expression %then
 .
 .
%endif

The Pascal program,
if_then_else.p

program if_then_else (output);
%var red
begin
%if red %then

writeln ('It is red.');
%else

writeln ('It is not red.')
%endif
end.

The output when you compile
if_then_else.p without the
-config

hostname% pc -xl if_then_else.p
hostname% a.out
It is not red.

The output when you supply
-config with the argument
red

hostname% pc -xl -config red if_then_else.p
hostname% a.out
It is red.

252 Pascal 4.0 User’s Guide

A

Comments
If the expression in %if expression %then is false , pc skips over the %then
part and executes the %elseif part instead. expression consists of a
conditional variable and the optional boolean operators, and , or , and not .
See the %else listing for examples of expression.

Example

The %elseifdef Directive
The %elseifdef directive provides an alternative action to the %ifdef
directive.

The Pascal program,
elseif.p

program elseif_example(output);

{ This program demonstrates the use of the
 %if, %then, and %elseif directives. }

%var blue red

begin
 %if blue %then
 writeln('The color is blue.');
 %elseif red %then
 writeln('The color is red.');
 %endif
end. { elseif_example }

The output when you supply
-config with the argument
blue

hostname% pc -xl -config blue elseif.p
hostname% a.out
The color is blue.

The output when you supply
-config with the argument
red

hostname% pc -xl -config red elseif.p
hostname% a.out
The color is red.

Pascal Preprocessor 253

A

Syntax
%ifdef expression %then
 .
 .
%elseifdef expression %then
 .
 .
%endif

Comments
If the expression in %ifdef expression %then is false , pc skips over the
%then part and executes the %elseifdef part instead. expression consists of a
conditional variable and the optional boolean operators, and , or , and not .
See the %else listing for examples of expression.

Example

The Pascal program, ifdef.p ,
which first checks if bird1 has
been defined. If not, it defines it
with a %var directive. If bird1
has been defined, the program
checks whether or not it needs
to define bird2 .

program ifdef_example(output);

%include 'bird.h';

begin
 %ifdef not(bird1) %then
 %var bird1
 %elseifdef not(bird2) %then
 %var bird2
 %endif;

 %if bird1 %then
 writeln('Bird one is a ', a, '.');
 %elseif bird2 %then
 writeln('Bird two is a ', b, '.')
 %endif
end. { ifdef_example }

254 Pascal 4.0 User’s Guide

A

The %enable Directive
The %enable directive sets a conditional variable to true .

Syntax
%enable var1 ..., varN

Comments
A defined conditional variable is enable (true) when it appears in either the
%enable directive or in the -config option. Conditional variables are false
by default.

The include file, bird.h var
 a: array[1..7] of char := 'penguin';
 b: array[1..6] of char := 'toucan';

%var bird1

The output when you enable
bird1 with the -config option

hostname% pc -xl -config bird1 ifdef.p
hostname% a.out
Bird two is a penguin.

The output when you enable
bird2 with the -config option

hostname% pc -xl -config bird2 ifdef.p
hostname% a.out
Bird two is a toucan.

Pascal Preprocessor 255

A

Example

The %endif Directive
The %endif directive indicates the end of a %if or %ifdef directive. See the
sections on %if and %ifdef for more information on this directive.

The %error Directive
The %error directive causes the compiler to print a string on the standard
output and treat it as an error.

The Pascal program,
enable.p . This example sets
the conditional variable two to
true , which is equivalent to
setting the -config option to
two on the command-line.

program enable_example(output);

{ This program demonstrates the use of
 the %enable compiler directive. }

var
 a: integer;
 b: integer;

%var one, two
%enable two

begin
 %if one %then
 a := maxint;
 writeln('One is defined as ', a:2, '.');
 %endif
 %if two %then
 b := minint;
 writeln('Two is defined as ', b:2, '.');
 %endif
end. { enable_example }

The commands to compile and
output enable.p

hostname% pc -xl enable.p
hostname% a.out
Two is defined as -32768.

256 Pascal 4.0 User’s Guide

A

Syntax
%error ' string'

Comments
pc does not produce an object file.

Example

The %exit Directive
The %exit directive instructs the compiler to stop processing the current
Pascal source file.

Syntax
%exit

The Pascal program, error.p program error_example(output);

{ This program demonstrates the use of the
 %error compiler directive. }

%var arch

begin
 %if arch %then
 writeln('This is a SPARC computer.');
 %else
 %error 'Unknown architecture.'
 %endif
end. { error_example }

error.p produces this error if
you compile it without the
–config sparc option.

hostname% pc -xl error.p
Tue Feb 28 17:10 1995 error.p

Line 12 : %error 'Unknown architecture.'
E --------------------^---'Unknown architecture.'
Compilation failed

Pascal Preprocessor 257

A

Comments
If the compiler encounters an %exit directive within an include file, it stops
processing the include file, but continues processing the source file in which
it is included. In effect, %exit is equivalent to an end-of-file marker.

When the compiler processes an %exit directive within an %if or %ifdef
construct, it closes all %if or %ifdef s before it stops processing the current
file.

Example

The %if Directive
The %if directive is a conditional branching directive.

Syntax
%if e xpression %then
 .
 .
%end if

The Pascal program,
exit_directive.p

program exit_directive(output);

begin
 writeln('Hello, world!')
end. { exit_directive }
%exit
Everything after the %exit is ignored.
So you can put anything here.

The commands to compile and
execute exit_directive.p

hostname% pc -xl exit_directive.p
hostname% a.out
Hello, world!

258 Pascal 4.0 User’s Guide

A

Comments
When pc encounters a %if directive, it evaluates expression. If expression is
true , pc executes the statements in the %then part. If expression is false , pc
skips over the %then part and executes the %else , %elseif , or %endif
directive. If no such directive exists, pc proceeds to the next statement.

The expression consists of a conditional variable and the optional boolean
operators and , or , and not . You can set a conditional variable on the
command-line by using the -config option. See “–config” on page 27 for
information on this option.

Assuming one and two are conditional variables, expression can be any of the
following:

one
two
one and two
one or two
not one
not two

Example
See the example in the %else listing on page 250.

The %ifdef Directive
The %ifdef directive determines whether or not you previously defined a
conditional variable in a %var directive.

Syntax
%ifdef expression %then
 .
 .
%elseifdef expression %then
 .
 .
%endif

Pascal Preprocessor 259

A

Comments
expression consists of a conditional variable and the optional boolean
operators and , or , and not . See the %else listing for examples of expression.

%ifdef is especially useful for determining whether or not a conditional
variable has been declared in an include file.

Example
See the example in “The %elseifdef Directive.”

The %include Directive
The %include directive inserts lines from the specified file in the input
stream.

Syntax
%include ' filename' ;

Comments
When cppas encounters the %include directive, it inserts the lines from the
file name into the input stream.

Example

The program unit,
include_prog.p

program include_prog;

%include 'extern.h';

begin
 global := 1;
 writeln('From MAIN, before PROC: ',global);
 proc;
 writeln('From MAIN, after PROC: ',global);
end. { include_prog }

260 Pascal 4.0 User’s Guide

A

The %list Directive
The %list directive enables a listing of the program.

Syntax
%list;

The module unit,
include_mod.p

module include_mod;

define
 global, proc;

%include 'extern.h';

procedure proc;

begin
 writeln('From PROC : ',global);
 global := global + 1;
end; { proc }

The include file, include.h var
 global : integer;

procedure proc; extern;

The commands to compile and
execute ext_prog.p and
ext_mod.p

hostname% pc -xl include_prog.p include_mod.p
include_prog.p:
include_mod.p:
Linking:
hostname% a.out
From MAIN, before PROC:1
From PROC : 1
From MAIN, after PROC:2

Pascal Preprocessor 261

A

Comments
The %list directive and the -l compiler option perform the same function.

Example

The Pascal program, list.p program list_example(output);

{ This program demonstrates the use of the %list
 and %nolist directives. }

%list;
%include 'types.h';
%nolist;

begin
 pri := [red, yellow, blue];
 pos := [true, false];
 cap := ['A'..'Z'];
 dig := [0..100];

writeln('There are ',card(pri): 4, ' primary colors.');
writeln('There are ',card(pos): 4, ' possibilities.');
writeln('There are ',card(cap): 4, ' capital letters.'');
writeln('There are ',card(dig): 4, ' digits.')

end. { list_example }

The include file, types.h type
 lowints = 0..100;
 primary_colors = set of (red, yellow, blue);
 possibilities = set of boolean;
 capital_letters = set of 'A'..'Z';
 digits = set of lowints;

var
 pri: primary_colors;
 pos: possibilities;
 cap: capital_letters;
 dig: digits;

262 Pascal 4.0 User’s Guide

A

The %nolist Directive
The %nolist directive disables the program listing.

Syntax
%nolist;

Comments
%nolist is the default.

Example
See the example under “The %list Directive.”

The listing includes the time
each unit was compiled and the
name of each unit compiled.

hostname% pc -xl list.p
Tue Feb 28 15:48 1995 list.p:

6 %list;
Tue Feb 28 15:50 1995 ./types.h:

1 type
2 lowints = 0..100;
3 primary_colors = set of (red, yellow, blue);
4 possibilities = set of boolean;
5 capital_letters = set of 'A'..'Z';
6 digits = set of lowints;

8 var
9 pri: primary_colors;
10 pos: possibilities;
11 cap: capital_letters;
12 dig: digits;

Tue Feb 28 15:52 1995 list.p:
7 %include 'types.h';

hostname% a.out
There are 3 primary colors
There are 2 possibilities
There are 26 capital letters
There are 101 digits

Pascal Preprocessor 263

A

The %slibrary Directive
cppas treats %slibrar y in the same manner as the %include directive. See
“The %include Directive” on page 259.

The %var Directive
The %var directive defines conditional variables for the preprocessor.

Syntax
%var var1 ..., varN

Comments
A conditional variable is defined when it appears in a %var directive;
otherwise, it is undefined.

Example
See the example under “The %config Directive” on page 247.

The %warning Directive
The %warning directive instructs pc to print a string on the standard output
as a compiler warning.

Syntax
%warning ' string'

Comments
pc produces an object file.

264 Pascal 4.0 User’s Guide

A

Example

The Pascal program,
warning.p

program warning_example(output);

{ This program demonstrates the use of the
 %warning compiler directives. }

%var blue

begin
 %if blue %then
 writeln('The color is blue.');
 %else
 %warning 'Color not defined'
 %endif
end. { warning_example }

The output when you compile
warning.p without the
–config option

hostname% pc -xl warning.p
Fri Mar 3 15:03 1995 warning.p

Line 12:%warning 'Color not defined'
w -------------------^----- 'Architecture not defined'

265

Error Messages B

The following is a list of the error messages produced by Pascal, arranged by
message number.

10010: Builtin <function> takes exactly <number> argumen ts

10020: Builtin <function> takes at least <number> arguments

10030: Builtin <function> takes at least <number> arguments
and at most <number>

10040: Built-in <function> cannot be passed as a parameter

10050: argv takes two arguments

10060: argv's first argument must be an integer, not <type>

10070: argv's second argument must be a string, not <type>

10080: Argument to card must be a set, not <type>

10090: flush takes at most one argument

10100: flush's argument must be a file, not <type>

10110: Not enough arguments to <function>

266 Pascal 4.0 User’s Guide

B

10120: Too many arguments to <function>

10130: Actual argument cannot be conformant array

10140: Actual argument is incompatible with formal var
parameter <identifier> of <function>

10150: Actual argument is incompatible with formal
<paramtype> parameter <identifier> of <function>

10160: Actual argument to NONPASCAL procedure cannot be
conformant array

10170: Extra arguments to ADDR ignored

10180: Argument to <function> must be of type <type>, not
<type>

10190: Second argument to <function> must be of type <type>,
not <type>

10200: First argument to <function> must be of type <type>,
not <type>

10210: Illegal argument to IN_RANGE

10220: Type clash in argument to IN_RANGE

10230: Illegal argument to ADDR

10240: Third argument to <function> must be of type <type>,
not <type>

10250: Argument to ADDR is a dynamically allocated variable
<identifier>

10260: Argument to ADDR is an internal variable <identifier>

10270: Argument to ADDR is a nested function <function>

10280: Argument to ADDR is an internal procedure <function>

Error Messages 267

B

10290: Fourth argument to <function> must be of type <type>,
not <type>

10300: First argument to <function> cannot be a univ_ptr

10310: < number> argument to < function> must be of type < type>,
not < type>

10320: < number> argument to < function> must be unpacked

10330: < number> argument to < function> must be packed

10340: <function> (line <number>) has <number> arguments

10350: Transfer functions take exactly one argument

10360: sizeof takes at least 1 argument

10370: Formal arguments should be given only in forward
declaration

10380: Types must be specified for arguments

10390: Each procedure/function argument must be declared
separately

10400: <function> takes no arguments

10410: <function> takes either zero or one argument

10420: <function> takes exactly one argument

10430: <function>'s argument must be integer or real, not
<type>

10440: seed's argument must be an integer, not <type>

10450: <function>'s argument must be a real, not <type>

10460: <function>'s argument must be an integer or real, not
<type>

268 Pascal 4.0 User’s Guide

B

10470: ord's argument must be of scalar type, not <type>

10480: <function>'s argument must be of scalar type, not
<type>

10490: odd's argument must be an integer, not <type>

10500: chr's argument must be an integer, not <type>

10510: Argument to eoln must be a text file, not <type>

10520: Argument to eof must be file, not <type>

10530: Transfer functions take only one argument

10540: Arguments to <function> must be variables, not
expressions

10550: Read requires an argument

10560: Write requires an argument

10570: Message requires an argument

10580: null takes no arguments

10590: <function> expects one argument

10600: Argument to <function> must be a file, not <type>

10610: <function> expects one or two arguments

10620: First argument to <function> must be a file, not <type>

10630: Second argument to <function> must be a string, not
<type>

10640: <function> expects at least one argument

10650: (First) argument to <function> must be a pointer, not
<type>

Error Messages 269

B

10660: Second and successive arguments to <function> must be
constants

10670: Argument to <function> must be a alfa, not <type>

10680: halt takes no arguments

10690: stlimit requires one argument

10700: stlimit's argument must be an integer, not <type>

10710: remove expects one argument

10720: remove's argument must be a string, not <type>

10730: linelimit expects two arguments

10740: linelimit's second argument must be an integer, not
<type>

10750: linelimit's first argument must be a text file, not
<type>

10760: page expects one argument

10770: Argument to page must be a text file, not <type>

10780: Assert expects one or two arguments

10790: Second argument to assert must be a string, not
<type>

10800: pack expects three arguments

10810: unpack expects three arguments

10820: Illegal transfer function argument

10830: constant argument expected

270 Pascal 4.0 User’s Guide

B

10840: Illegal argument with format radix specification;
probably a comma missing

11010: have incompatible conformant array schemas

11020: sizeof(conformant array) is undefined

11030: Conformant arrays are not allowed at ANSI Level 0

11040: Subscripting allowed only on arrays, not on <type>s

11050: subrange value or array subscript (<integer>) is out
of range

11060: compiler takes size of array

11070: Elements of a packed array cannot be passed by
reference

11080: Subscripting allowed only on arrays and varying, not
on <type>s

11090: Varying size must be a constant

11100: Size of <identifier> is zero

11110: Character array lower bound <> 1

11120: Character array upper bound of 1

11130: <function> requires a to be an unpacked array, not
<type>

11140: <function> requires z to be a packed array, not <type>

11150: <operation> not allowed on arrays - only allow = and
<>

11160: Packed multidimensional conformant arrays are not
permitted

Error Messages 271

B

11170: For-statement variable <identifier> cannot be an element
of a record

11180: . allowed only on records, not on <type>s

11190: <identifier> is not a field in this record

11200: Record required when specifying variant tags

11210: Missing case constants in variant record

11220: <identifier> is a duplicate field name in this record

11230: Duplicate variant case label in record

11240: <operation> not allowed on records - only allow = and
<>

11250: Variable in with statement refers to <identifier>, not
to a record

11260: Too many tag fields

11270: No variant case label value equals specified
constant value

11280: Tag fields cannot be <type>s

11290: Bad variant constant

11300: variant required after case

12010: Assert expression must be Boolean, not <type>s

12020: illegal transfer function with <identifier>

12030: Illegal transfer function

12040: Transfer functions on bit fields not implemented

12050: Oct/hex allowed only on writeln/write calls

272 Pascal 4.0 User’s Guide

B

12060: Width expressions allowed only in writeln/write
calls

12070: Cannot write <type>s with two write widths

12080: Can't write <identifier>s with oct/hex

12090: First write width must be integer, not <type>

12100: Second write width must be integer, not <type>

12110: Negative widths are not allowed

12120: Cannot write unpacked array to textfile

12130: Can't read <type>s from a text file

12140: Can't 'readln' a non text file

12150: Oct/hex allowed only on text files

12160: Write widths allowed only on text files

12170: Cannot write unpacked array to textfile

12180: Can't write <type>s to a text file

12190: Can't 'writeln' a non text file

13010: constant identifier required

13020: Constant value cannot be evaluated at compile-time

13030: Constant too large for this implementation

13040: <identifier> is a constant and cannot be qualified

13050: Constant string too long

13060: Constant expression is required

Error Messages 273

B

13070: constant argument expected

13080: newline in string or char constant

13090: empty character constant

13100: too many characters in character constant

14010: Constant declarations should precede type, var and
routine declarations

14020: Label declarations should precede const, type, var
and routine declarations

14030: Type declarations should precede var and routine
declarations

14040: All types should be declared in one type part

14050: All constants should be declared in one const part

14060: INTERNAL ignored, procedure was previously declared
PUBLIC or as EXTERNAL

14070: <function> has already been declared forward

14080: Unknown language <identifier> in EXTERN procedure
declaration ignored

14090: Unresolved forward declaration of <function>

14100: <identifier> DEFINED, but not declared

14110: label <identifier> was declared but not defined

14120: PUBLIC procedures must be declared at outer block
level

14130: PRIVATE ignored, procedure was declared DEFINED
previously

274 Pascal 4.0 User’s Guide

B

14140: PUBLIC ignored, procedure was declared INTERNAL or
PRIVATE previously

14150: PRIVATE ignored, procedure was declared PUBLIC or as
EXTERNAL previously

14160: For-statement variable <identifier> must be declared in
the block in which it is used

14170: All labels should be declared in one label part

14180: Expected identifier VARYING in declaration

14190: Variable declarations should precede routine
declarations

14200: All variables should be declared in one var part

14210: public vars must be declared at outer block level

14220: Declarations may not be both STATIC and PUBLIC,
STATIC is ignored

14230: Declarations may not be both DEFINE and PRIVATE,
DEFINE is ignored

14240: Declarations may not be both EXTERN and PRIVATE,
EXTERN is ignored

14250: <identifier> was declared in a DEFINE, cannot be STATIC

14260: <identifier> was declared in a DEFINE, cannot be PRIVATE

14270: <identifier> used as both a field and a type name in a
record definition

14280: cannot DEFINE <identifier>, variable was not previously
declared as EXTERN

14290: Declaration found when statement expected

Error Messages 275

B

14300: Expected keyword begin after declarations, before
statements

14310: Improper initialization for variable <identifier>

14320: <identifier> is already defined globally

14330: Definition of name <identifier> after applied use in
<identifier>

14340: Definition of name <identifier> after applied use

14350: <identifier> is already defined in this block

14360: Range lower bound exceeds upper bound

14370: '*' subrange descriptor used in illegal context

14380: Cannot initialize dynamic local variables

15010: File <identifier> listed in program statement but not
declared

15020: File <identifier> listed in program statement but
declared as a <identifier>

15030: File <identifier> listed in program statement but
defined as <identifier>

15040: Files cannot be passed by value

15050: Files cannot be a component of <identifier> passed by
value

15060: Pre-defined files input and output redefined

15070: Files cannot be members of files

15080: Missing closing <quote or bracket> for include file name

15090: Include filename must end in .i or .h

276 Pascal 4.0 User’s Guide

B

15100: Cannot open #include file <filename>

15110: line <number> does not exist in file <identifier>

15120: End-of-file expected - QUIT

15130: Unexpected end-of-file - QUIT

16010: <identifier> is not a function

16020: Too many levels of function/procedure nesting

16030: No assignment to the function variable

16040: Functions should not return <type>s

16050: Procedure/function nesting too deep

16060: pcc_fvar(): no result for this function

16070: <identifier> is a <class>, not a function

16080: Illegal function qualification

16090: compiler takes size of function

16100: Can't call <identifier>, its not a pointer to a
procedure or function

16110: Can't qualify a function result value

16120: Cannot assign value to built in function

16130: INTERNAL option illegal for procedure pointer -
option ignored

16140: Unknown option for procedure pointer ignored :
<option>

16150: Too many levels of function/procedure nesting

Error Messages 277

B

16160: Procedure/function nesting too deep

16170: Can't call <identifier>, its not a pointer to a
procedure or function

16180: Can't call <identifier>, it's <class> not a procedure

16190: Procedure <identifier> found where expression required

16200: Illegal procedure call, expecting value

16210: Non-pascal routine <identifier> will fail if called
indirectly from pascal

16220: Passing nested routine <identifier> to non-pascal
routine <identifier>

16230: Can't call <identifier>, its not a pointer to a
procedure or function

17010: Case label out of range

17020: Real constant out of range for this implementation

17030: Short real out of range for this implementation

17040: Short real <number> out of range for this
implementation

17050: Implementation restriction: sets must be indexed by
16 bit quantities

17060: Subscript of <identifier> is out of range

17070: Subscript value of <number> is out of range

17080: subrange value or array subscript (<integer>) is out
of range

17090: Successor of <integer> is out of range

278 Pascal 4.0 User’s Guide

B

17100: Predecessor of <integer> is out of range

17110: Value of <integer> is out of range

17120: Range upper bound of <integer> out of set bounds

17130: Range lower bound of <integer> out of set bounds

17140: Value of <integer> out of set bounds

17150: value of <integer> (initial assign. to for loop
variable) is out of range

17160: Value of <integer> (terminal assign. to for loop
variable) is out of range

17170: Tag type is out of range

17180: Base out of range (2..36)

18020: (* in a (* ... *) comment

18030: { in a { ... } comment

18040: Comment does not terminate - QUIT

18050: Illegal character, use the -xl option to process %
compiler directives

18060: Illegal character

18070: unexpected EOF

18080: Point of error

18090: Parsing resumes

18100: Parse stack overflow

18110: Expression passed to UNIV formal <identifier> was
converted to <type> of size <number> bytes

Error Messages 279

B

18120: 8 or 9 in octal number

18130: Number too large for this implementation

18140: <operation> is undefined for reals

18150: <identifier> cannot have more elements in z (<integer>)
than in a (<integer>)

18160: <identifier> is an unimplemented extension

18180: Initializer must be a string

18190: Initialization string <string> is too long

18200: Expected 'options', not <identifier>

18210: Unknown option ignored : <identifier>

18220: Duplicate options specification : <identifier>

18230: Unimplemented option ignored : <identifier>

18240: <identifier> undefined on line <number>

18250: <identifier> improperly used on line <number>

18260: <identifier> is neither used nor set

18270: <identifier> is never used

18280: <identifier> is used but never set

18290: Length of external label for identifier <identifier>
exceeds implementation limit

18300: Applied use of <identifier> before definition in this
block

18320: <operation> is forbidden for reals

280 Pascal 4.0 User’s Guide

B

18420: Undefined <identifier>

18430: Undefined identifier

18440: Improper <identifier> identifier

18450: Deleted <token>

18460: Replaced <token> with a <token>

18470: Replaced <class> id with a <class> id

18480: Inserted <token>

18490: Expected <token>

18500: Label <identifier> not defined in correct block

18510: Label <identifier> redefined

18520: <identifier> is undefined

18530: ^ allowed only on files and pointers, not on <type>s

18540: Pascal uses [] for subscripting, not ()

18550: Error occurred on qualification of <identifier>

18560: division by 0

18580: Variable required in this context

18590: Universal pointers may not be dereferenced

18600: Illegal format

18610: Unknown format radix <identifier> ignored, expecting hex
or oct

18620: Expression required

Error Messages 281

B

18630: Unreachable statement

18640: Unrecoverable syntax error - QUIT

18650: Too many syntax errors - QUIT

18660: Input line too long - QUIT

18670: Unrecognizable # statement

18680: Include syntax error - expected ' or \" not found

18690: Absurdly deep include nesting - QUIT

18700: Too many levels of include nesting - QUIT

18710: Bad arbitrary base integer

18720: Bad base <number> number, <number>

18730: Digits required after decimal point

18740: Digits required before decimal point

18750: Digits required in exponent

18760: Space required between number and word-symbol

18770: Character/string delimiter is '

18780: Unmatched ' for string

18790: Null string not allowed

18800: Invalid preprocessed file (probably renamed as
'.p'). Compile the original .p file with -sb again

19010: Module name expected after keyword MODULE

19020: Identifiers after module name ignored

282 Pascal 4.0 User’s Guide

B

19030: Missing program statement

19040: Input is used but not defined in the program
statement

19050: Output is used but not defined in the program
statement

19060: Program parameter <identifier> is repeated

20010: Left operand of <operator> must be integer, real or
set, not <type>

20020: Right operand of <operator> must be integer, real or
set, not <type>

20030: Cannot mix sets with integers and reals as operands
of <type>

20040: Operands of <operator> must be Boolean or Integer

20050: Left operand of / must be integer or real, not <type>

20060: Right operand of / must be integer or real, not
<type>

20070: Left operand of <operator> must be Boolean, not <type>

20080: Right operand of <operator> must be Boolean, not <type>

20090: Left operand of <operator> must be integer, not <type>

20100: Right operand of <operator> must be integer, not <type>

20110: Right operand of 'in' must be a set, not <type>

20120: Operands of + are of incompatible types

20130: Operand of <operator> must be integer or real, not
<type>

Error Messages 283

B

20140: Operands of <operator> must both be sets

20150: Set types of operands of <operator> must be compatible

20160: Incorrect statement usage const. with operand

20170: ^ allowed only on files and pointers, not on <type>s

20180: <operation> is an illegal operation on strings

20190: not must operate on a Boolean or Integer, not <type>

20200: not must operate on a Boolean, not <type>

20210: <operation> not allowed on pointers - only allow = and
<>

20220: Strings not same length in <operator> comparison

20230: <identifier>s and <identifier>s cannot be compared -
operator was <operator>

20240: <identifier>s may not participate in comparisons

21010: Attempt to pass IN parameter to formal reference
parameter

21020: Expression type clashed with type of value parameter
<identifier> of <identifier>

21030: Expression given (variable required) for var
parameter <identifier> of <identifier>

21040: Parenthesis not allowed for var parameter <identifier>
of <identifier>

21050: Parameter type not identical to type of var
parameter <identifier> of <identifier>

21060: Packed/unpacked type conflict between formal and
actual parameters

284 Pascal 4.0 User’s Guide

B

21070: Conformant array parameters in the same
specification must be the same type

21080: actual parameter is not an array

21090: array index type is incompatible with conformant
array parameter <identifier>

21100: array index type is not within of index type of
conformant array parameter <identifier>

21110: array index type is not within
range[<number>.. <number>] of index type of conformant array
parameter <identifier>

21130: <class> <identifier> given for formal <class> parameter
<identifier>

21140: does not match type of formal <class> parameter
<identifier> (line <number>)

21150: <class> parameter <identifier> of <identifier> (line <number>)

21160: does not match <class> parameter <identifier> of <identifier>
(line <number>)

21170: Type of <class> parameter <identifier> of <identifier> (line
<number>)

21180: does not match type of <class> parameter <identifier> of
<identifier> (line <number>)

21190: Parameter congruity error: incompatible groupings

21200: Packed/unpacked type conflict between parameters of
<identifier> and <identifier>

21210: than formal <class> parameter <identifier> (line <number>)

21220: Conformant array parameter bound symbol table entry
is NULL

Error Messages 285

B

21230: Program parameter <identifier> is repeated

21240: Previous declaration for formal parameter ' <identifier>'
has different type

21250: Previous declaration for formal parameter ' <identifier>'
has different name ' <identifier>'

21260: Previous declaration for procedure ' <identifier>' had
different number of formal parameters

21270: Formal <class> <name> cannot be qualified

21280: <class> <name> cannot be qualified

21290: Expression given, <class> required for <class> parameter
<identifier>

21300: Variable given, <class> required for <class> parameter
<identifier>

21310: Cannot take value of OUT parameter

21320: Invalid assignment to a parameter marked as IN

21330: Parameter congruity error: incompatible groupings

21340: UNIV parameter <identifier> should be passed as a var
parameter

21350: Fields which select variant parts may not be passed
by reference

21360: Cannot pass components of packed structures by
reference

21370: Cannot pass components of packed structures by VAR,
OUT, or IN/OUT

22010: Ran out of memory (gentypind)

286 Pascal 4.0 User’s Guide

B

22020: Ran out of memory (case)

22030: Ran out of memory (hash)

22040: Ran out of memory (TRIM)

22050: Ran out of memory (defnl)

22060: Ran out of memory (buffer_ir_pass)

22070: Ran out of memory (string)

22080: Ran out of memory (tralloc)

22090: out of memory (tstr)

22100: out of memory

22110: Ran out of hash tables

22120: Ran out of tree tables

22130: Out of space (put_on_idlist)

22140: out of tree space; try simplifying

22150: out of temporary string space

23010: <identifier> is a non-standard function

23020: <identifier> is a non-standard procedure

23030: Two argument forms of reset and rewrite are non-
standard

23040: NIL values in const declaration are non-standard

23050: Set constants in const declaration are non-standard

23060: Expressions in const declaration are non-standard

Error Messages 287

B

23070: Routine Options are not standard

23080: External procedures and functions are not standard

23090: Separately compiled routine segments are not
standard

23100: UNIV parameters are non-standard

23110: IN parameters are non-standard

23120: OUT parameters are non-standard

23130: IN OUT parameters are non-standard

23140: <identifier> is a nonstandard function

23150: OTHERWISE clause in case statements is non-standard

23160: Ranges in case statements are non-standard

23170: Transfer functions are non-standard

23180: Reading scalars from text files is non-standard

23190: Writing <type>s with two write widths is non-standard

23200: Zero widths are non-standard

23210: Oct and hex are non-standard

23220: Writing <type>s to text files is non-standard

23230: <identifier> is a nonstandard procedure

23240: Short-circuit operators are non-standard

23250: <operator> comparison on sets is non-standard

23260: record comparison is non-standard

288 Pascal 4.0 User’s Guide

B

23270: Storage Class non-standard

23280: Initialization in declaration part is non-standard

23290: UNIV_PTR types are non-standard

23300: '_' in an identifier is nonstandard

23310: Octal constants are non-standard

23320: <operator> is non-standard

24010: Cannot exit -- not within a loop

24020: For-statement variable <identifier> must be unqualified

24030: For-statement variable <identifier> cannot be an element
of a record

24040: For-statement variable <identifier> may be illegally
changed at line <number>

24050: For-statement variable <identifier> must be declared in
the block in which it is used

24060: For-statement variable <identifier> cannot be <type>s

24070: Can't modify the for-statement variable <identifier> in
the range of the loop

24080: Incorrect control variable

24090: Type of initial expression clashed with index type
in 'for' statement

24100: Type of limit expression clashed with index type in
'for' statement

24110: Can't modify the for variable <identifier> in the range
of the loop

Error Messages 289

B

24120: Case selectors cannot be <type>s

24130: Duplicate otherwise clause in case statement

24140: Case label type clashed with case selector
expression type

24150: Multiply defined label in case, lines <number> and
<number>

24160: No case-list-elements

24170: Bad case constant

24180: Range in case label must be in ascending order

24190: Maximum number of case selectors exceeded

24200: Cannot next -- not within a loop

24210: Goto <label> is into a structured statement

24220: Goto <label> from line <number> is into a structured
statement

24230: Variable in with statement refers to <type>, not to a
record

24240: Maximum WITH nesting depth exceeded, ignoring WITH
variables

24250: Variable in with statement not correct

24260: cannot assign to lhs

24270: Variable required

24280: <class> <identifier> found where variable required

24290: univ_ptr variable cannot be dereferenced in
assignment

290 Pascal 4.0 User’s Guide

B

24300: Improper use of the DEFINE statement

24310: End matched <keyword> on line <number>

24320: Inserted keyword end matching {begin|record|class}
on line <number>

25010: {pack|unpack}: elements of a and z must have the
same type

25020: component types of formal and actual arrays are not
conformable

25030: Type of function <name> (line <number>)

25040: Case label type clashed with case selector
expression type

25050: Type clash: initializer must be a pointer

25060: Type clash: type of initializer does not match type
of array

25070: Type clash: Integer is incompatible with real

25080: Type clash: Initializer out of range

25090: Type clash: real is incompatible with integer

25100: This resulted because you used '/' which always
returns real rather

25110: than 'div' which divides integers and returns
integers

25120: Type clash: non-identical scalar types

25130: Type clash: unequal length strings

25140: Type clash: varying char and unknown

Error Messages 291

B

25150: Type clash: packed and unpacked set

25160: Type clash: files not allowed in this context

25170: Type clash: non-identical <class> types

25180: Type clash: <type>s with file components not allowed
in this context

25190: Type clash: <type> is incompatible with <type>

25200: Type clash: string and unpacked array

25210: Type clash: string and packed array with lower bound
<> 1

25220: Type clash: Non-identical string types must be
packed

25230: Type clash: packed array with lower bound <> 1

25240: Set default type 'intset' is not a set

25250: Upper bound of element type clashed with set type in
constant set

25260: Lower bound of element type clashed with set type in
constant set

25270: Element type clashed with set type in constant set

25280: Set elements must be scalars, not <type>s

25290: Set of real is not allowed

25300: Procedures cannot have types

25310: Function type can be specified only by using a type
identifier

292 Pascal 4.0 User’s Guide

B

25320: Function type should be given only in forward
declaration

25330: Different type declared previously for function
return <name>

25340: Function type must be specified

25350: Type of expression in while statement must be
Boolean, not <type>

25360: Until expression type must be Boolean, not <type>, in
repeat statement

25370: Array index type incompatible with declared index
type

25380: Too many subscripts

25390: Bad type of variable used for call

25400: Transfer functions only work on types of the same
size

25410: Only type char allowed in varying array

25420: Type mismatch in read from non-text file

25430: Type mismatch in write to non-text file

25440: Specified tag constant type clashed with variant
case selector type

25460: Tag type is out of range

25470: Variant label type incompatible with selector type

25480: set types must be compatible in comparisons -
operator was <operator>

Error Messages 293

B

25490: <class> types must be identical in comparisons -
operator was <operator>

25500: Index type clashed with set component type for 'in'

25510: Operands of + are of incompatible types

25520: Type names (e.g. <type>) allowed only in declarations

25530: Type name (e.g. <type>) found in illegal context

25540: Set types of operands of <operator> must be compatible

25550: expression has invalid type

25560: Type of expression clashed with type of variable in
assignment

25570: Type of expression in if statement must be Boolean,
not <type>

25580: Type of transfer function does not match type of
right side

25590: <identifier> is a <class>, not a type as required

25600: Set type must be range or scalar, not <type>

25610: Sets must have basetype with range <number>.. <number>

25620: Subrange type cannot contain a expression

25630: Scalar types must be identical in subranges

25640: Can't mix <identifier>s and <identifier>s in subranges

25650: Subrange of real is not allowed

25660: Subrange bounds must be Boolean, character, integer
or scalar, not <type>

294 Pascal 4.0 User’s Guide

B

25670: Index type for arrays cannot be real

25680: Array index type is a <type>, not a range or scalar
as required

25690: Packed conformant array schema requires type
identifier as element type

25700: Illegal type in VARYING array, only type CHAR
allowed

25710: Size of <type> type exceeds implementation limits

25720: Initializer must be a constant value of same type

26010: Malformed program statement

26020: Malformed declaration

26030: Malformed const declaration

26040: Malformed type declaration

26050: Malformed var declaration

26060: Malformed record declaration

26070: Malformed statement in case

26080: Malformed statement

26090: Missing/malformed expression

26100: Label restricted to 4 digits

26110: Label declared non-integer

26120: Replaced unknown parameter specifier <identifier> with
OUT

26130: Deleted ';' before keyword else

Error Messages 295

B

26140: Extension to WITH statement not allowed

27010: Integer overflow in constant expression

The following are internal error messages. If any of them is displayed, contact
Sun Customer Support.

18330: NAME with no symbol table entry

18340: ir_symbol: unknown class

18350: ir_leaf: cannot take address of op <identifier>

18360: ir_leaf: illegal leaf node, op = <identifier>

18370: ir_starg: illegal STARG

18380: ir_exit: no return label

18390: cannot take address of op < identifier>

18400: op '< identifier>' not implemented yet

18410: goal < integer> not defined for op < operation>

18570: wasted space: < number>

296 Pascal 4.0 User’s Guide

B

297

Index

A
–a option to pc command, 24
a.out , 2, 8, 9, 17
address parameters, 169
alignment of types in FORTRAN, 165
and operator, 38
AnswerBook, xxii
arguments, See parameters
arithmetic exceptions in math

libraries, 239
arrays, conformant

parameters by value, 101, 114, 123,
193

as (1) assembler, 40, 57
assert statement, 25
attributes for XView, 224
automatic replacement of errors, 207
Auto-Read

definition, 61
for dbx , disable, 61

B
–B option to pc command, 24
-b option to pc command, 25
block buffering of program output, 25
boolean expression, 36, 38

breaking a program into parts, 67
-bsdmalloc option to pc command, 25
buffering of program output,

controlling, 24
built-in function and procedure type

errors, 211

C
-C option to pc command, 25, 49
–c option to pc command, 26
C programming language, 89 to 134, 245

arrays by value, 114
C calls Pascal, 93 to 116
compatible types, 90
function return values, 115, 130
global variables in C and Pascal, 133
parameter passing, 93
parameters as pointers to

procedures, 131
Pascal

calls C, 117 to 132
interface, 89

procedures and functions as
parameters, 131

records and structures, 105, 124
sharing declarations, 88
strings by value, 114
value parameters, 129 to 130

298 Pascal 4.0 User’s Guide

var parameters, 94, 117
C++ programming language, 137 to 162

arguments, passing of
by reference, 139, 155
by value, 150, 157

arrays, fixed, 144
C++ calls Pascal, 138 to 155
character strings, 142
compatible types, 138
compiler options, 137
function return values, 152, 159
functions, 155
global variables in C++ and

Pascal, 161
-lpc and -lc options, 137
name encoding, 138
parameter passing, 152
Pascal

calls C++, 155 to 160
file pointers to C++, 162
interface, 137

records and structures, 146
value parameters, 158

-calign option to pc command, 26
cg , the code generator, 18
–cg89 option to pc command, 26
–cg92 option to pc command, 26
character data type, 33, 46
characters, illegal, 205
compatible types

Pascal and C, 90
Pascal and C++, 138
Pascal and FORTRAN, 165

compiler, 8, 11, 17 to 66
driver, 18
panics, 217

compiler directives, 246 to 263
#include , 67
%config , 247
%debug, 27, 249
%else , 250
%elseif , 251
%elseifdef , 252
%enable , 246, 254

%endif , 255
%error , 255
%exit , 256
%if , 247, 257
%ifdef , 255, 257, 258
%include , 259, 263
%list , 260
%nolist , 262
%slibrary , 263
%var , 247, 258, 263
%warning , 263

compiler semantic errors, 210 to 217
can’t read and write scalars, 212
expression diagnostics, 212
function and procedure type

errors, 211
goto statement, 216
incompatible types, 210
procedures and functions as

parameters, 211
scalar, 211
type equivalence, 214
uninitialized variables, 216
unreachable statements, 215
unused item errors, 216

compiler syntax errors, 205 to 209
digits in real numbers, 206
expected symbols, malformed

constructs, 208
expected, unexpected, end-of-file,

QUIT, 209
illegal characters, 205
replacements, insertions,

deletions, 207
string errors, 206
undefined or improper

identifiers, 208
compiling

a Pascal program, 8, 13
units, 69
with libraries, XView, 224

–cond option to pc command, 27, 249
conditional

compilation, 27
variables, 246

Index 299

–config option, 245, 252, 256
defined, 246
undefined, 245

%config directive, 247
–config option to pc command, 27, 246,

252
conformant arrays

parameters between Pascal and
C, 101, 114, 123

parameters between Pascal and
C++, 152, 158, 159

parameters between Pascal and
FORTRAN, 182, 193

conventions, xxi
cpp

#include directive, 67
the C preprocessor, 18, 27, 40, 49, 245

cppas , 245 to 263
compiler directives, 246 to 263
conditional variables, 245
preprocessor, 27, 40
the -xl preprocessor, 18, 19

D
–D option to pc command, 27
–dalign option to pc command, 28
data type character, 33, 46
data types, XView, 226
dbx , 3, 31, 61
%debug compiler directive, 27, 249
debugger , 3
debugging

disable Auto-Read for dbx , 61
fix-and-continue feature, 3
with dbx , 3
with –g option to pc command, 31

declarations
define , 83
sharing between multiple units of

different languages, 87
#define statement, 27
define

declaration, 83

variable, 76
define variable, 82
diagnostics, format of, 210
digits in real numbers, 206
directives, See compiler directives
–dn option to pc command, 28
documentation, xxii to xxiii
DOMAIN Pascal, 27
–dryrun option to pc command, 28
–dy option to pc command, 28

E
%else directive, 250
%elseif directive, 251
%elseifdef directive, 252
%enable directive, 246, 254
%endif directive, 255
end-of-file errors, 209
enumerated types, 92, 166
equivalence of types, errors, 214
%error directive, 255
error recovery, 207
errors, 205 to 220

automatic replacement, 207
from incompatible types, 210
from uninitialized variables, 216
from unreachable statements, 215
from unused items, 216
illegal characters, 205
in constructs, 208
in ends of program files, 209
in expressions, 212
in function and procedure types, 211
in goto statement, 216
in identifiers, 208
in reading and writing scalars, 212
in real numbers, 206
in scalars, 211
in semantics, 210
in strings, 206
in symbols, 208
in syntax, 205

300 Pascal 4.0 User’s Guide

in type equivalence, 214
out of memory, 217
runtime, 217 to 220

exception-handling function in math
libraries, 240

executable file, 2, 9, 11, 18, 46
default, 9, 17
how to rename, 9

execution profile, 39
%exit directive, 256
expression diagnostics, 212
extended language features, 56
extern

option, 86, 88
variable, 76

external option, See extern option

F
–fast option to pc command, 28
faster linking and initializing, 61
fbe (1) assembler, 40
features, Pascal compiler, 2
file

name extensions, 20
variable, 12

-flags option to pc command, 32
floating-point, nonstandard, 29
–fnonstd option to pc command, 29
-fns option to pc command, 29
format of error diagnostics, 210
FORTRAN programming language, 163

to 204
and Pascal, compatible types, 165
arrays by value, 182
character dummy arguments, 189
compatible types, 164
FORTRAN calls Pascal, 168 to 185
function return values, 184, 201
incompatibilities with Pascal, 166
parameter passing, 167
Pascal

calls FORTRAN, 185 to 202

interface, 163
procedures and functions as

parameters, 202 to 204
records and structures, 175, 194
sharing declarations, 88
strings by value, 182
value parameters, 181, 197
var parameters, 168, 186 to 197

-fround= r option to pc command, 29
-ftrap= t option to pc command, 30
function

extern option, 86, 88
external , 88
return values with C, 115, 130
return values with FORTRAN, 184,

201
type errors, 211

G
-G option to pc command, 30
–g option to pc command, 31
global variables

C and Pascal, 133
C++ and Pascal, 161

goto statement, compiler semantic
error, 216

H
–H option to pc command, 31, 49
handles, XView, 226
header files

for XView, 224
in a program, 70
math libraries, 233

–help option to pc command, 32
–hname option to pc command, 31

I
–I option to pc command, 32
–i option to pc command, 32
I/O errors, 212, 217

Index 301

identifier errors, 208
identifiers, 33, 46, 76
IEEE support functions in math

libraries, 236
%if directive, 247, 257
%ifdef directive, 255, 257, 258
illegal characters, 205
#include directive, 67
%include directive, 259, 263
include file, 84, 257

and library header files, 74
as header file, 70
introduction, 67
producing a listing of, 32
search order, 32
to break a program up, 67

incompatible type errors, 210
inline(1) procedure call expander, 40
input, 10 to 13
installation, xix
interface

C++-Pascal, 137
C–Pascal, 89
FORTRAN-Pascal, 163

internationalization, 4
iropt , 40

K
-keeptmp option to pc command, 32
keyword, 33, 46
-Kpic and -KPIC options to pc

command, 39

L
–L option to pc command, 33
-l option to pc command, 33, 261
language support, See internationalization
ld (1) linker, 26, 34, 40
-L directory option to pc command, 33
Level 0 standard Pascal, 1, 46
Level 1 standard Pascal, 1, 46

lib object library, 34
libm functions in math libraries, 235
libm.a math library, 234
libm.so math library, 234
–libmieee option to pc command, 34
–libmil option to pc command, 34
libraries

compiling with XView, 224
creating, 74

libsunmath support in math
libraries, 242

libsunmath.a math library, 234
licensing, 5

-noqueue option, 5
queuing, 5
status, 5
-xlicinfo option, 5

line buffering, of program output, 24
linelimit procedure, 25
linking units, 69
%list directive, 260
listing the Pascal program, 33
–l lib option to pc command, 34
locale language support, 5
logic errors, 215
lowercase characters, 33, 46

M
malformed construct errors, 208
manuals, See documentation
math libraries, 233 to 243

arithmetic exceptions, 239
contents, 234
function and procedure

prototypes, 233
IEEE support functions, 236
libm functions, 235
libm.a , 234
libm.so , 234
libsunmath support, 242
libsunmath.a , 234

302 Pascal 4.0 User’s Guide

matherr() exception-handling
function, 240

Pascal header files, 233
SPARC libraries, 238

memory, out of, 217
–misalign option to pc command, 34
module

heading, 76
source files, 75
unit, 69

–mt option to pc command, 34
mv command, 9

N
–native option to pc command, 35
-nocx option to pc command, 35
–nolib option to pc command, 35
–nolibmil option to pc command, 35
%nolist directive, 262
nonstandard floating point, 29
-noqueue licensing option, 5, 35
Notifier, XView, 222
-notrace option to pc command, 36

O
–O option to pc command, 36
–o option to pc command, 9, 38
object code optimizer, 36
object file, 18
operating environment, See Solaris 2.x

operating system
operator

and , 38
or , 38
redirection (>), 11

options
order of processing, 23
to pc command, 23 to 66

order of processing, options, 23
out of memory error, 217
output, 10 to 13

P
–P option to pc command, 36, 38
–p option to pc command, 39
panics, compiler, 217
parameter passing

C and Pascal, 93
C++ and Pascal, 152
FORTRAN and Pascal, 167

parameters
as pointers to procedures with C, 131
passed by address, 94, 168, 186, 197
passed by reference, 94, 168, 186, 197
passed by reference between C and

Pascal, 117 to 128
passed by value

between Pascal and C, 129 to 130
between Pascal and C++, 152
between Pascal and

FORTRAN, 180, 197 to
202

value conformant array, 101, 114, 123,
193

value conformant array passed
between Pascal and
FORTRAN, 182

var , 95, 117 to 128, 168, 186 to 197
Pascal program

how to compile, 8, 13
how to list, 33
how to run, 9 to 13
how to write, 7

pc command, 2, 7, 8, 11, 17 to 66
–a option, 24
–B option, 24
–b option, 25
-bsdmalloc option, 25
–C option, 25
–c option, 26
-calign option, 26
–cg89 option, 26
–cg92 option, 26
–cond option, 27, 249
–config option, 27, 246, 252, 256
–D option, 27

Index 303

–dalign option, 28
–dn option, 28
–dryrun option, 28
–dy option, 28
–fast option, 28
-flags option, 32
–fnonstd option, 29
-fns option, 29
-fround= r option, 29
-ftrap= t option, 30
-G option, 30
–G option, 30
–g option, 31
–H option, 31, 49
–help option, 32
–hname option, 31
–I option, 32
–i option, 32
-keeptmp option, 32
-Kpic and -KPIC options, 39
–L option, 33
–l option, 33, 261
-L directory option, 33
–libmieee option, 34
–libmil option, 34
list of options, 23 to 66
-l lib option, 34
–misalign option, 34
–mt option, 34
–native option, 35
-nocx option, 35
–nolib option, 35
–nolibmil option, 35
-noqueue option, 35
-notrace option, 36
–O option, 36
–o option, 9, 38
–P option, 36, 38
–p option, 39
–pg option, 39
–PIC option, 39
–pic option, 39
–Qoption , 40
-qp option, 40
–Qpath option, 40
–Qproduce option, 40

-R option, 41
–Rpath option, 41
–Rw option, 41
–S option, 46
-s option, 46
-s0 and –s1 options, 49
–sb option, 46
–sbfast option, 46
-tc option, 47
–temp option, 47
–time option, 48
–U option, 49
–V option, 17
–v option, 49
–VO and –V1 options, 49
–w option, 49
–xarch= a option, 49
–xcache= c option, 53
–xchip= c option, 54
–xF option, 55
–xildoff option, 56
–xildon option, 56
–xl option, 56, 245
–xlibmopt option, 57
–xlicinfo option, 57
–xMerge option, 57
–xnolibmopt option, 57
-xregs= r option, 60
-xs option, 61
-xsafe=mem option, 61
-xspace option, 62
–xtarget= t option, 62
–Z option, 66
–ztext option, 66

pc0 , 18, 40
pc3 , 18, 40
–pg option to pc command, 39
-PIC option to pc command, 39
-pic option to pc command, 39
pointer range checking, 31
preprocessor, 32

cpp (1), 27, 40
cppas , 27, 40

private variable, 73, 80

304 Pascal 4.0 User’s Guide

procedure
and function type errors, 211
extern option, 86, 88
external , 88
linelimit , 25
type errors, 211
write , 46

program
breakup of a, 67
logic errors, 215
source files, 75
unit, 68

programming
object-oriented, 222
procedure-oriented, 222

public variable, 73, 80

Q
–Qoption to pc command, 40
-qp option to pc command, 40
–Qpath option to pc command, 40
–Qproduce option to pc command, 40
queuing for a license, 5
QUIT errors, 209

R
-R option to pc command, 41
range check on pointers, 31
reading and writing scalars, errors in, 212
real numbers, errors, 206
records, variant, 108, 125, 195
redirecting input and output, 11 to 13
reference parameters, 94, 117, 128, 169
replacements in the case of errors, 207
–Rpath option to pc command, 41
running a Pascal program, 9 to 13
runtime errors, 217 to 220
–Rw option to pc command, 41

S
–S option to pc command, 46
-s option to pc command, 46
-s0 and -s1 options, 49
–sb option to pc command, 46
–sbfast option to pc command, 46
scalar errors, 211
Selection Service, XView, 222
semantic errors, 210
separate compilation, 75 to 88

define variable, 76
extern variable, 76
module source files, 76
program source files, 76

separately compiled units, 68
set types, 93, 110, 167, 179
shared libraries, 24
sharing

routines among units, 76 to 88
variables among units, 71 to 73, 76 to

86
variables and routines across multiple

units
using define variable, 82
using extern variable, 86
using include files, 78, 84
using public var

declarations, 80
with –xl , 80
without –xl , 77

shortreal , 154, 182
sizes of types, 165
%slibrary directive, 263
source

code, 40
file, 38

SPARC math libraries, 238
standard

input file, 10
output file, 10
Pascal, Level 0 and 1, 1, 46

statement

Index 305

#define , 27
assert , 25

stdin , 10
stdout , 10
string errors, 206
symbol

errors, 208
table for dbx , 61

syntax errors and recovery, 205 to 207

T
-tc option to pc command, 47
tcov (1) utility, 24
–temp option to pc command, 47
text editor

textedit , 3
vi , 3

–time option to pc command, 48
type

equivalence, errors, 214
shortreal , 154, 182
sizes, See sizes of types

types
compatible in C and Pascal, 90
compatible in C++ and Pascal, 138
compatible in FORTRAN and

Pascal, 165
enumerated, 92, 166
incompatible, 210
set, 93, 110, 167, 179

U
–U option to pc command, 49
uninitialized variable error, 216
units

compiling and linking, 69
introductory information, 67 to 73
separately compiled, 68
sharing routines, 76 to 88
sharing variables, 71 to 73, 76 to 86

unreachable statements, errors, 215
unused item errors, 216

uppercase characters, 33, 46
/usr/include , 32

V
-V option to pc command, 17
–v option to pc command, 49
value conformant array parameters, 101,

114, 123, 182, 193
value parameters

with C, 129, 130
with C++, 152
with FORTRAN, 181, 197

%var directive, 247, 258, 263
variable

conditional, 27, 246
define , 82
initialization of and errors, 216
parameters, 94

with C, 117, 128
with C++, 161
with FORTRAN, 168

private , 73, 80
public , 73, 80

variables and routines, sharing across
multiple units

using define
variable, 82

using define declaration, 83
using extern variable, 86
using include files, 78, 84
using public var declarations, 80
without –xl , 77

variant records, 108, 125, 195
vi text editor, 3
–VO and –V1 options to pc command, 49

W
–w option to pc command, 49
%warning directive, 263
warning diagnostic, 49
Window Manager, XView, 222
write procedure, 46

306 Pascal 4.0 User’s Guide

writing a Pascal program, 7
writing scalars, errors in, 212

X
–xarch= a option to pc command, 49
–xcache= a option to pc command, 53
–xchip= c option to pc command, 54
–xF option to pc command, 55
–xildoff option to pc command, 56
–xildon option to pc command, 56
–xl option to pc command, 56, 245
–xlibmopt option to pc command, 57
-xlicinfo licensing option, 5
–xlicinfo option to pc command, 57
–xMerge option to pc command, 57
–xnolibmopt option to pc command, 57
-xregs= r option to pc command, 60
-xs option to pc command, 61
-xsafe=mem option to pc command, 61
-xspace option to pc command, 62
–xtarget= t option to pc command, 62
XView

attributes, 224
data types, 226
documentation, 221
handles, 226
header files, 224
introduction, 3
Notifier, 222
Selection Service, 222
Window Manager, 222

Z
–Z option to pc command, 66
–ztext option to pc command, 66

Index 307

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories Inc., filiale
entierement detenue par Novell, Inc. ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par
des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et aux
logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par un ou
plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, Sun Microsystems Computer Corporation, Solaris, le Sun Microsystems Computer
Corporation logo, SunSoft, le SunSoft logo, ProWorks, ProWorks/TeamWare, ProCompiler, Sun-4, SunOS, ONC, ONC+, NFS,
OpenWindows, DeskSet, ToolTalk, SunView, XView, X11/NeWS, AnswerBook, et Magnify Help sont des marques deposées ou
enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans certains autres pays. UNIX est une marque enregistrée aux Etats-
Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée de
Novell, Inc. PostScript et Display PostScript sont des marques d’Adobe Systems, Inc. PowerPC™ est une marque deposée de
International Business Machines Corporation. HP ® and HP-UX ® sont des marques enregistrées par Hewlett-Packard Company.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

